

愛三技報 2025 No.8

C

त्र

AISAN TECHNICAL JOURNAL

M

「カーボンニュートラル」

愛三技報 2025 No.8 AISAN TECHNICAL JOURNAL 特集 'カーボンニュートラル」

Contents

巻 頭 言

「環境技術で笑顔の未来を」	 P.02

特 集:カーボンニュートラル

論 文

- ・低濃度アンモニアの吸着シミュレーションモデル構築 P.04
- ・ステッピングモータを用いた密閉タンク封鎖弁の開発 ………… P.13

取り組み

・キャニスタの樹脂材料変更 P.17

受賞技術

- ・カーボンニュートラル燃料対応電動ポンプ P.19
- ・燃料電池システム用エア制御弁 P.22
- 一般

論 文

- ・マルチフェーズ方式 PFC コンバータにおける
 相数切り替え制御の提案 P.24
 ・デバイス内部のゲートソース間電圧の推定 P.28

取り組み

- ・小型モビリティ用モータコントローラ …………………………… P.37
- ・BEV車用 電池ケース深絞り技術開発……………………………………………………………
- ・電動化に向けたソフトウェア人財育成 ………………………………………………………… P.41
- ・連成解析によるソレノイドバルブ開発 …………………………………………… P.45
- ・知財ビジネスマッチング事業への参画 …………………………………………………………

受賞技術

・EGR用二重偏心弁 P.49

本技報に掲載された写真・図・イラスト等を含む すべてのコンテンツについて、著作権法に基づ き、無断転載・複製・再配布を固く禁じます。

巻頭言

特集・受賞技術

論文

取り組

受賞技術

「環境技術で笑顔の未来を」

"Beaming Future by Environmental Technologies"

近年、地球規模での気候変動によって、甚大な災害が世界各地で多発しています。この 原因の一つとして、温室効果ガス(CO₂、メタンなど)による地球温暖化の影響が指摘さ れていますが、このような環境問題は、世の中で古くから認識され、様々な取り組みがな されてきました。

都市部で大気汚染が社会問題となった米国では、1963年に大気浄化法(Clean Air Act) が制定され、1970年に改正(通称マスキー法)された内容はとても厳しく、自動車の環境 技術開発に大きな影響を与えました。また1973年の第四次中東戦争をきっかけに原油価 格が高騰し、第一次オイルショックが発生した後、各国で自動車の燃費規制が策定され、 省エネルギー化が進みました。結果として自動車一台当たりの CO₂の排出は抑制されま したが、世界の経済成長とともに CO₂の排出総量は増加を続けました。

その後、地球環境問題を考える大きな転機となったのは、1992年にブラジルのリオ・ デ・ジャネイロで開催された「国連環境開発会議(地球サミット)」だったと思います。 ここでは「環境」と「開発」のバランスを取る「持続可能な開発」を実現するための取り 組みが話し合われ、「気候変動に関する国際連合枠組条約」が採択されました。

そして1997年に京都で開かれた「気候変動枠組条約第3回締約国会議(COP3)」で 「京都議定書」が採択され、先進国の温室効果ガス排出量の削減目標が定められました。 日本ではそれに呼応する形で、燃費2倍を謳うハイブリッドカーの量産が始まり、世界中 で様々な電動車の開発が加速しました。 さらに 2015 年に先の気候変動に関する国際会議(COP21)において、「パリ協定」が 採択され、「世界の平均気温上昇を産業革命以前と比べて 2℃より十分低く保ち、1.5℃に 抑える努力をする」ことを目標とし、「国連気候変動に関する政府間パネル(IPCC)」 が示す科学的な根拠に基づいて、今世紀後半に世界全体の温室効果ガス排出量を実質的に ゼロにする「脱炭素化」を目指すことが規定されました。

日本でも 2020 年に、本技報の特集テーマである「カーボンニュートラル」が首相より 宣言されました。(2050 年までに温室効果ガスの排出を全体としてゼロにする)

先にも述べましたが、これまで環境を良くするための厳しい自動車の排気/燃費規制が、 各国で段階的に設定されて、それに応える技術が進化してきました。そこに「ゼロ CO₂」 という新たな目標が加えられ、内燃機関を持つ多くの自動車を電気自動車へシフトさせよ うとする性急な対応がこの数年進められてきました。

しかし、電気自動車は価格が高く、また充電する電気の製造方法は、現状ではまだ化石 燃料に依存し、クリーンとは言えず、充電スタンドの不足、充電時間の長さ、航続距離の 短さなどの課題は簡単には解消できず、極端な電気自動車シフトは少し弱まりました。

もちろん CO₂ ゼロ化の最終目標は変わりませんが、電気自動車への切り替えだけに解 を求めるのではなく、多様な利点のある様々な自動車をうまく組み合わせて、省エネ、CO₂ 低減から CO₂ ゼロ化へ、マルチパスウェイで対応していくことが重要だと思います。

ここで内燃機関を持つ自動車に目を向けると、バイオ燃料、e-Fuel、水素などのカーボ ンニュートラル燃料を使えば、ゼロ CO₂ は実現できます。さらに HC、NOx などの他の エミッションをゼロ化できれば、クリーンエネルギーで作られた電気で走る電気自動車と 同等に扱うことができます。それに加えて内燃機関を持つ自動車は、汚い空気を取り込ん で浄化させ、大気をきれいにするマイナスエミッションの効果を実現することも可能です。

当社は、古くから内燃機関の吸気系、燃料供給系、排気系の機能製品、自動車の燃費や 排気の制御・適合などの環境技術に関わる開発を行ってきました。特に燃料系では、ガソ リン、LPG、CNG、アルコールなどの多様な燃料を扱うノウハウを持っています。

これらの技術を使って、内燃機関を持つ自動車の「ゼロ CO₂」、「ゼロエミッション」 の実現を目指し、またその技術をグローバルサウスなどの国々へも展開して、地球環境 の保護や保全に貢献していきたいと思います。

さらに、これらの環境技術を活用して、電動化、クリーンエネルギー関連(燃料電池、 水素、アンモニアなど)、新たなモビリティの技術開発、製品化にも積極的に取り組み、 時流に合わせて AI、ソフト・デファインド・ビークル (SDV) に対応したソフトウェアや システムの開発にもチャレンジし、当社の強みであるモノづくり、生産技術を革新して、 新たな価値を生み出すソリューション提案などを通して、カーボンニュートラルの実現や 社会課題の解決に繋げていきたい。

最後に、これからも自動車産業の発展に寄与する新たな環境技術の開発、高品質な製品 やサービスの提供を続けて、世の中に貢献し、笑顔の未来を作っていきたいと思います。

特集

取

組

受賞技

衚

Ý

特集·論文

低濃度アンモニアの 吸着シミュレーションモデル構築

日下 星野 市川 友之 宮岡 裕樹 市川 貴之

要旨

アンモニア分解により生成した水素中に残留する微量アンモニアを除去する除害装置の破 過特性を予測する数値シミュレーションにおいて、吸着等温線の近似式から平衡吸着量が求 められているが、低濃度では破過時間の予測精度が低い、本研究では、低濃度の破過試験 に対応するゼオライトのアンモニア吸着等温線を測定するため、導入圧と温度を変化させた 複数の等温線測定を行った. これらは Roginsky の分布関数法により定式化された. これにより, 低濃度

アンモニアの破過時間を ppm オーダーで予測することができた.

1.はじめに

水素は環境にやさしく,質量あたりの燃焼熱はあらゆる 化学燃料の中で最も大きいという特徴などを持つため,近 年注日を集めている.しかしながら臨界温度が33 Kと極め て低温で,臨界圧力も1.3 MPaと比較的小さいため,水素 の体積あたりのエネルギーは常温ではとても小さくなって しまう.また水素の燃焼範囲は4%-75%と広いため爆発の 危険性が高く,その炎も高温で目に見えないという特性を 持っている.それ故に水素をより安全に,高密度にして貯蔵 する技術が求められている.

水素エネルギーの貯蔵・輸送の手段として水素化金属,ア ンモニアボラン,メチルシクロヘキサンなどの水素化合物 を用いることが検討されている(1,2).中でも液体アンモニア は常温でも1MPaで容易に液化すること、体積あたりの燃 焼熱が大きいことで注目を集めている(3).さらに体積あた りの水素原子の数が液体水素の1.5倍あるため,水素キャ リアとしても優れた特性を有している.しかしながらアンモ ニアはppmレベルの低濃度であっても高い毒性と腐食性 を持つため,水素にクラッキングする場合でも直接利用す る場合でも,残存したアンモニアは除害しなくてはならな い.程度として,燃料電池自動車にも搭載されている固体高 分子形燃料電池の水素源として利用する場合、被毒による 燃料電池の劣化を抑制するには残存アンモニア濃度を0.1 ppm以下にしなければならない⁽⁴⁾.除害手法には様々ある が,低濃度アンモニアに対応でき処理量を大きくできる手 法として,吸着材による吸着除害を採用した(5-9).愛三工業 ではガソリン蒸気の吸着装置として、キャニスタを設計製造 してきた実績があり、その知見を流用することも期待でき る.除害装置を設計する上で重要となるのが.装置下流へ 流出してしまうアンモニアの時間変化である,破過特性を 予測することである.揮発性有機化合物や二酸化炭素の吸 着に関しては,数値シミュレーションによって破過特性を予 測する研究が多く報告されているが,ppmオーダーの特性 については検討されていなかった(10-14),本研究ではゼオラ イトへの低濃度アンモニア吸着挙動に着目し,一般に予測 が難しいppmオーダーでの破過特性を予測できる吸着塔 のシミュレーションモデルを作成した.

2.実験とシミュレーション

2.1. 実験手法

アンモニア吸着に適する吸着材は色々あるが,今回は 安価で吸着量が多く,加熱するだけで吸着したアンモニア を脱離できるNa置換X型ゼオライト(NaX;F9-HA;東ソー (株))を用いた⁽¹⁵⁾.破過試験は図1に示す装置を用いて実 施した.装置の大部分は宮岡らの先行研究と同じものを用 いている(16).カラムの内径は25 mmで,充填層の長さが 100 mmとなるようにゼオライトを計量し, グラスウール と穴あき金属板,コイルスプリングを用いて固定されてい る.破過試験の前処理としてアルゴンを100 L/hで流しな がら,アンモニア濃度計が0.1 ppmを下回るまでカラムを 350 ℃で加熱,その後試験温度まで冷却している.試験に 使用したアンモニア混合ガスは水素74.9%/窒素25%/ア ンモニア1000 ppmの比率であらかじめ調整されたガス を使っている.カラムを通って出てきたガスにおけるアンモ

Ъ

巻頭言

特 集

論文

取り組み

1 破過試験装置の模式図

ニア濃度を測定し、流通時間との関係を示したものが破過 曲線である.

アンモニア吸着等温線はBELSORPmax(マイクロトラッ ク・ベル)を用いて測定した.この装置ではゼオライトを入 れた試料管を真空引きした後,純アンモニアを少量ずつ導 入,試料管と装置配管における導入前後の平衡圧から吸着 量を算出している.

2.2. シミュレーション手法

シミュレーションは吸着等温線,質量保存則,エネル ギー保存則,吸着速度式を連立したモデルとなっており, Dassault Systems社のDymola 2017を用いて計算さ れている.このモデルは下記の仮定に基づいている.

- (1) 供給ガスは理想気体でありアンモニアとキャリアガス の2成分で構成されている.
- (2) 局所熱平衡を仮定し,ある場所におけるガスと吸着材の温度は等しいとする.
- (3) 質量保存則とエネルギー保存則における分子拡散の 項は移流の項と比べて十分小さいとして無視する.
- (4) 吸着速度式は線形推進力近似で表現する.
- (5) ゼオライトはアンモニアのみ吸着し,キャリアガスの吸着は無視する.
- (6) 初期のカラム内温度と圧力は一様である.
- (7) 物理量のカラム径方向依存性は無視する.
- (8) カラム内の空隙率,吸着材嵩密度,カラムと吸着材の 比熱は一定である.
- これらの仮定から,以下の式セットが得られた. 質量保存則は次のようになり,

$$\frac{\partial \rho}{\partial t} = -\frac{\partial (u\rho)}{\partial x} - \frac{\hat{\rho}_z}{\varepsilon} \frac{\partial q}{\partial t}$$
(1)

ここで ρ (kg/m³), u (m/s), t (s), x (m), ε , q (kg/kg NaX) そして $\hat{\rho}_z$ (kg/m³)はそれぞれ混合ガスの密度,空塔速度, 時間,カラム軸に沿った座標,空隙率,ゼオライト単位質量 あたりのアンモニア吸着量,そしてゼオライトのバルク密 度を表している.

$$C_{P,z}\hat{\rho}_{z}\frac{\partial T}{\partial t} = -\varepsilon C_{P,g}\rho u\frac{\partial T}{\partial x} + Q_{in} + W$$
(2)

ここで *C_{P,z}* (J/kg/K), *C_{P,g}* (J/kg/K), *T* (K), *Q_{in}* (W/m³)そして *W* (W/m³) はそれぞれ, ゼオライトの比熱, 混合ガスの 比熱, 混合ガスの温度, カラム壁からの熱流入そして吸着熱 を表している.

吸着速度式は次のようになり,

$$\frac{\partial q}{\partial t} = k_f \hat{\rho}_{\rm NH_3} \left(\frac{P_{\rm NH_3} - P_{\rm NH_3}^*}{P} \right) \tag{3}$$

ここで $\hat{\rho}_{NH_3}$ (kg/m³), $P_{NH_3}^*$ (Pa) そして P_{NH_3} (Pa) はそれ ぞれ純アンモニア気体の密度, アンモニア界面分圧そして アンモニア分圧である. アンモニア界面分圧とは, アンモニ ア吸着量qと平衡となる仮想的なアンモニア分圧を意味す る. k_f は吸着速度係数で, 今回のモデルでは吉田の式を採 用している⁽¹⁷⁾.

$$(k_f/u)(\mathrm{Sc})^{2/3} \propto [\mathrm{Re}/(1-\varepsilon)]^{-0.51}$$
 (4)

ここでReとScはレイノルズ数とシュミット数である.

アンモニア界面分圧を求めるのに必要な圧力と吸着量の 平衡関係を表現するのが吸着等温線であり, 式モデルには 様々なものが存在している.キャニスタの設計に用いてい たのはDubinin-Astakhovモデル⁽¹⁸⁾であり,ガソリン蒸気 が液体として吸着されていることを仮定していた.一方で極 低濃度のアンモニア吸着は吸着量が少ないため,ゼオライ ト表面に直接アンモニア分子が吸着されることとなる.水素 の吸着に関する先行研究から,吸着材最表面の吸着状態は 液体と見なすことができないと予想されるため(19),今回は 表面吸着モデルを採用することとした.またアンモニアは水 と同じく極性分子なので,ゼオライトへの水分子の吸着に関 する城野らの先行研究も参考にした⁽²⁰⁾、城野らは、NaXゼオ ライトは3種類のカチオンを持っているが、その内吸着サイ トとして機能するのは2種類であり、この2種類の吸着サイト はアンモニア分子と1対1で相互作用するわけではなく,2つ のサイトの中間等にも吸着されることがあることを分子シ ミュレーションによって示している.これらを考慮し,今回は

谷頭

受賞技術

論文

巻頭言

特 集

特集・取り組み

特集・受賞技術

論文

取り組み

受賞技術

Roginskyらの手法⁽²¹⁾を参考に表面吸着の理論に不均一性 を考慮したモデルを作成した.吸着サイトの分布関数は吸着 エネルギーに対してガウス分布になり,この分布は温度に依 存しないと仮定すると,平衡吸着量の式は次のようになり,

$$q = q_t \left[1 - \frac{1}{2} \operatorname{erfc}\left(-\frac{\tilde{E}}{\sqrt{2}}\right) \right]$$
(5)

ここで q_t (kg/kg-NaX)は最大吸着容量を表し, erfcは相補誤差関数であり, \tilde{E} は次のようになる.

$$\tilde{E} = \frac{-RT \ln K_0 P_{\rm NH_3}^* - E_0}{\sigma} \tag{6}$$

 E_0, σ^2 そして K_0 はそれぞれ,最頻値,標準偏差,そして平衡 係数に対応するパラメータである.Rは気体定数である.こ のモデルにおいて吸着熱は次のようになり,

$$W = -\frac{1}{\widehat{V}_{\rm NH_3}} \frac{\partial q}{\partial t} \left[RT \ln K_0 P_{\rm NH_3}^* \right]$$
(7)

 \hat{V}_{NH_3} (m³/mol)は純アンモニア気体のモル体積である.

吸着等温線の式(5)は3つのパラメータを持つが,この値 を理論値に予想するのは困難であるため,実用上は吸着等

温線を実測し結果をフィッティングすることで定式化,シミュ レーションモデルに適用している.

3.結果と考察

3.1. 探索的検討結果について

ゼオライトを充填したカラムに混合ガスを275 L/h(stp) の流量で供給した.このとき温度は298 Kで圧力は114 kPaであり,この試験に対して同様の条件で数値シミュレー ションを実施しモデルの妥当性を検証した.図2aにシミュ レーションで用いた吸着等温線の実測値とフィッティング結 果を示し,図2bに破過試験結果とシミュレーション結果を示 す.図2bではフィッティングパラメータk_fの値に依らず,シ ミュレーションでは,アンモニア濃度が実測結果と比較して 遥かに早く増加し始めるという結果を示している.この結果 はシミュレーションにおける吸着量が実際の吸着量よりも 少ないことを意味している.シミュレーションにおける吸着 量は吸着等温線から決定され,図2aで吸着等温線が上手く フィッティングできていることを考えると,この結果は吸着 等温線測定のような静的な吸着量と破過試験のような動的 な吸着量が異なる可能性があることを示唆している.

破過試験は混合ガスで実施されるため,たとえアンモニ ア分圧が小さくても全圧は大気圧以上となる試験である. 一方で吸着等温線測定は純アンモニアガスを用いて実施 されるため,アンモニア分圧が小さいというのはそのまま 全圧が小さいことを意味する.

城野らの先行研究では水がゼオライトに吸着する際,吸着 サイトの周りでクラスター化している可能性が示唆されて いる⁽²⁰⁾.アンモニアも水と同じように強い極性を持っている

破線がシミュレーション予測 (a) 5 NH₃ concentration (ppm) 4 3 2 High dose sim. Low dose sim. 1 Exp. 0 5 10 15 0 20 Time (h) (b) 5 NH₃ concentration (ppm) 4 293 K 302 K 3 318 K 2 1 0 0 1 2 3 4 5

図5 (a)改善後(Low dose)のモデルによる破過曲線

(b)各温度における破過曲線.実プロットが実測値,

ため,同様にクラスター化していると考えると,全圧が小さい 場合はこのクラスターによってゼオライトの結晶内部へアン モニア分子が拡散できず,吸着サイトがほとんど使われない まま平衡に達してしまっている可能性が示唆される.

3.2. 修正後試験結果について

拡散阻害に関して、パラジウムコートされたマグネシウム への水素吸蔵において類似の現象が報告されている⁽²²⁾.こ のアナロジーと考えると、クラスター化の原因は急速な吸 着にあると考えられる.そこで吸着等温線の測定の際に、一 度に導入されるアンモニア量を減らした測定を実施した.

導入圧を変化させて吸着等温線を測定した結果を図3に 示す.この結果から10 Pa以下の領域における吸着量が導 入圧によって大きく変化することが見て取れる.破過試験で はアンモニアは十分ゼオライトの結晶内部まで拡散してい ると考えられるため,同様に結晶内部まで吸着が進行して いると期待される最も導入圧を小さくして測定した吸着等 温線がシミュレーションに適すると考えられる.導入圧を小 さくし,さらに温度を変化させて吸着等温線を測定した結果 を図4aに示す.これらの吸着等温線から吸着サイトの分布 関数を算出すると図4bが得られ,これをガウス分布でフィッ ティングし定式化,数値シミュレーションに適用した.

Time (h)

次に先の試験と同様の流量275 L/h(stp),温度298 K, 圧力114 kPaでシミュレーションを実行,フィッティングパ ラメータk_fの値を決定した.シミュレーションモデルに導 入圧を小さくして測定した吸着等温線を適用すると,実測 と破過特性が一致する解が存在するようになることが図 5aからも確認できる.作成したシミュレーションモデルが 有用か確認するため条件を変えた破過試験を実施し,シ ミュレーション予測との比較を行った.図5bに流量900 L/ h(stp),圧力190 kPaとした破過試験結果とシミュレー ション予測結果を示す.温度や流量が変化しても0.1 ppm 破過の時間は誤差10%程度で一致しており,ppmレベル の低濃度でも精度よく破過特性を予測できていることが見 て取れる.結果は省略するが,さらにカラム内径や充填層長 さを変えた試験においても破過特性を予測することに成功 している.

論文

取り組み

4.結論

本研究では,定容法による吸着等温線の測定において, 導入圧を変化させることで吸着量が変化するという予想 外の結果が得られた.これらの吸着等温線の内,シミュレー ションの結果から,破過試験に対応するのは導入圧を低く して測定した等温線であると分かった.この吸着等温線の 導入圧依存性はアンモニア分子のクラスター化に起因す る可能性が示唆されるが,より詳細な調査が必要である.ま た,作成した新たな吸着等温線のモデル式は,複数種類の 吸着サイトを持つ吸着材にも適用できると考えられ,ゼオ ライト以外の吸着材(MOF,PCP等)にも活用可能であると 期待される.

破過試験に対応した吸着等温線の測定,吸着サイトの不 均一性を考慮した吸着等温線の定式化の2つを以て,ppm オーダーの低濃度においても破過特性を精度良く予測す るシミュレーションモデルを作成することが可能となった.

これら結果は水素キャリアとしてのアンモニアを安全に 利用するための技術として活用可能であり、将来の水素社 会の実現に貢献するものであると考える.

参考文献

- (1) A. Züttel, Hydrogen storage methods, Naturwissenschaften 91 (2004) 157–172. https://doi.org/10.1007/s00114-004-0516-x.
- (2) U. Eberle, M. Felderhoff, F. Schüth, Chemical and physical solutions for hydrogen storage, Angewandte Chemie -International Edition 48 (2009) 6608–6630. https://doi.org/10. 1002/anie.200806293.
- (3) A. Valera-Medina, H. Xiao, M. Owen-Jones, W.I.F. David, P. J. Bowen, Ammonia for power, Prog Energy Combust Sci 69 (2018) 63–102. https://doi.org/10.1016/j.pecs.2018.07.001.
- (4) ISO 14687, Hydrogen fuel quality Product specification, 2019.
- (5) C.Y. LIU, K. AIKA, Ammonia adsorption on ion exchanged Y-zeolites as ammonia storage material, Journal of the Japan Petroleum Institute 46 (2003) 301–307.
- (6) C.C. Rodrigues, D. de Moraes, S.W. da Nóbrega, M.G. Barboza, Ammonia adsorption in a fixed bed of activated carbon, Bioresour Technol 98 (2007) 886-891. https://doi.org/ https://doi.org/10.1016/j.biortech.2006.03.024.
- (7) P. Kumar, K.-H. Kim, E.E. Kwon, J.E. Szulejko, Metal-organic frameworks for the control and management of air quality: advances and future direction, J Mater Chem A Mater 4 (2016) 345–361.
- (8) B. Wang, L.H. Xie, X. Wang, X.M. Liu, J. Li, J.R. Li, Applications of metal-organic frameworks for green energy and environment: New advances in adsorptive gas separation, storage and removal, Green Energy and Environment 3 (2018) 191–228. https://doi.org/10.1016/j.gee.2018.03.001.
- (9) M. Tamotu, B. Keito, T. Seiki, Studies on the adsorption removal of ammonia gas, 2) adsorption of ammonia gas on several kinds of zeolites, Sangyo Igaku 19 (1977) 87–91. https://doi.org/10.1539/joh1959.19.87.
- (10) R. Ben-Mansour, M.A. Habib, O.E. Bamidele, M. Basha, N.A.A. Qasem, A. Peedikakkal, T. Laoui, M. Ali, Carbon capture

by physical adsorption: Materials, experimental investigations and numerical modeling and simulations - A review, Appl Energy 161 (2016) 225–255. https://doi.org/10.1016/j. apenergy.2015.10.011.

- (11) Y. Xiao, S. Qiu, Q. Zhao, Y. Zhu, C.B. Godiya, G. He, Numerical simulation of low-concentration CO₂ adsorption on fixed bed using finite element analysis, Chin J Chem Eng 36 (2021) 47–56. https://doi.org/10.1016/j.cjche.2020.08.012.
- (12) J.A. Delgado, M.A. Uguina, J.L. Sotelo, B. Ruíz, Fixed-bed adsorption of carbon dioxide-helium, nitrogen-helium and carbon dioxide-nitrogen mixtures onto silicalite pellets, Sep Purif Technol 49 (2006) 91–100. https://doi.org/10.1016/j. seppur. 2005.08.011.
- (13) D.T. Tefera, M. Jahandar Lashaki, M. Fayaz, Z. Hashisho, J.H. Philips, J.E. Anderson, M. Nichols, Two-dimensional modeling of volatile organic compounds adsorption onto beaded activated carbon, Environ Sci Technol 47 (2013) 11700-11710. https://doi.org/10.1021/es402369u.
- (14) C.L. Chuang, P.C. Chiang, E.E. Chang, Modeling VOCs adsorption onto activated carbon, Chemosphere 53 (2003) 17–27. https://doi.org/10.1016/S0045-6535(03)00357-6.
- (15) S.H. Satoshi YOSHIDA, M. NAKANO, Nitrogen and Oxygen Adsorption Properties of Ion-exchanged LSX Zeolite, KAGAKU KOGAKU RONBUNSHU 30 (2004) 461-467. https://doi. org/10.1252/kakoronbunshu.30.461.
- (16) H. Miyaoka, H. Miyaoka, T. Ichikawa, T. Ichikawa, Y. Kojima, Highly purified hydrogen production from ammonia for PEM fuel cell, Int J Hydrogen Energy 43 (2018) 14486–14492. https://doi.org/10.1016/j.ijhydene.2018.06.065.
- (17) F. Yoshida, D. Ramaswami, O.A. Hougen, Temperatures and partial pressures at the surfaces of catalyst particles, AIChE Journal 8 (1962) 5–11.
- (18) M.M. Dubinin, V.A. Astakhov, Description of adsorption equilibria of vapors on zeolites over wide ranges of temperature and pressure, in: ACS Publications, 1971.
- (19) H. Gi, Y. Kashiwara, Y. Itoh, K. Sharma, N. Ogita, H. Miyaoka, T. Ogawa, M. Simanullang, L. Prost, T. Ichikawa, Superdense state of the monolayer hy-drogen on adsorbent under liquefied temperature, Int J Hydrogen Energy 48 (2023) 3534-3540. https://doi.org/10.1016/j.ijhydene.2022.10.081.
- (20) K. Shirono, A. Endo, H. Daiguji, Molecular dynamics study of hydrated faujasite-type zeolites, J Phys Chem B 109 (2005) 3446–3453.
- (21) S.Z. Roginsky, Adsorption and Catalysis on Non-Uniform Surface, USSR Academy (1949).
- (22) V.P. Zhdanov, A. Krozer, B. Kasemo, Kinetics of first-order phase transitions initiated by diffusion of particles from the surface into the bulk, Phys Rev B 47 (1993) 11044.

著者

宮岡 裕樹 _{広島大学}

リヨロ 夏之 広島大学

特集

取り組

特集·論文

アンモニア発電の低エネルギー起動に向けた 常温水素化技術の研究開発

寒川 太郎 市川 友之 宮岡 裕樹 市川 貴之

要旨

SOFC(固体酸化物形燃料電池)を用いたアンモニアFC発電は,アンモニアをクラッキング して水素にする際の熱に燃料電池発電時の排熱を利用できるため,高純度水素生成や高効 率発電が可能であると考えられている.

しかし,起動時は燃料電池が低温のため排熱利用ができず,電気ヒータ等による改質器の加 温が必要であり,エネルギーロスが大きいことが知られている.

そこで,電気ヒータを用いない低エネルギー起動に向けて,流動アンモニアガスとMHの反応による常温 での水素化技術の研究開発を行った.

1.はじめに

現在,地球温暖化対策に向けさまざまな取り組みが世界 的に進められている中で,温室効果ガスを発生させないエ ネルギー源の一つとして水素の利用拡大が世界各国で取 り組まれている.

水素は常温で気体であることから,輸送/貯蔵性に課題が あり,その対策手段として水素密度が高く,液化が容易で水 素キャリアとして優れるアンモニアが注目されている.

アンモニアの研究では,エンジンやガスタービン等の燃焼用燃料として検討される以外に,燃料電池の燃料として アンモニアから水素を取り出し,発電の燃料として活用する 研究が多くされている.しかしながらアンモニアを水素と窒 素に分解(クラッキング)する際には触媒の加熱等,大きな 熱エネルギーが必要となる.

アンモニアを用いた燃料電池発電のシステム起動時に は、アンモニアのクラッキングに必要な熱源がないため、電 気ヒータ等により触媒を暖機する必要があるが、加熱に時 間がかかるとともに、必要なエネルギーが大きいという課 題がある.また、電気ヒータの代わりにアンモニアを燃焼し て熱源にする方法も考えられるが、NOx発生という新たな 課題が生じる(図1参照).

アンモニアや電気ヒータを使用しない暖機方法として水 素ボンベを利用した水素燃焼が存在する(図2.参照).

この方法は水素ボンベを利用することで簡単に暖機が可 能だが,水素用の供給系統が別途必要なため,発電システム

図2 水素ボンベを用いた暖機方法

巻頭言

特集

論文

取り組み

システム起動時の暖機用熱源確保の課題解決として,常 温でアンモニアから水素を生成できるAMMONOLYSIS 反応を活用し,熱源として活用できないかを検討した. AMMONOLYSIS反応とは,常温でアンモニアガスと MHの反応により,水素を発生させる技術である.また AMMONOLYSIS反応は可逆反応のため,システム起動時 に消費したMHの再生が可能である(図4参照).

アンモニアが含まれない水素であれば,燃焼時にNOxが 生じず,電力も消費することなく急速暖機が可能のため,ク リーンかつ低エネルギーでの短時間起動が可能となる(図5 参照).

AMMONOLYSIS反応を活用する際の課題として、「暖機 に必要な量の水素生成」がある、従来、雰囲気アンモニアガ スによる静的なAMMONOLYSIS反応の研究がされてきた (山本他,2009)が、暖機で用いるためには流動アンモニア ガスとMHを反応させ、暖機に必要な量の水素生成をする必 要がある.

2.評価方法

流動アンモニアガスとMHによるAMMONOLYSIS反応の評価を図6に示す装置にて実施した.

まず,流動ガス評価に用いた装置の特徴を以下に挙げる.

- ・従来研究していた雰囲気アンモニアガスによる AMMONOLYSIS反応の評価では、試料の入った密閉容 器にアンモニアガスを供給し、密閉する方法であったが、 流動アンモニアガスを常時供給することができないた め、図6のような設備を構築した。
- ・配管内の残留ガス除去のため,パージラインを設けた.
- ・試料を通った反応後ガスを検知器で分析し,水素生成量 をモニタリングできるようにした.

次に実験のフローについて以下に示す.

<実験のフロー>

- 高純度アルゴン(Ar)を充填したグローブボックス内で 計量した試料を試験容器に充填する.
- ② 試験容器を試験装置に設置する.
- ③ 配管内の残留ガスを除くため,配管内Arパージライン にバルブを切り替えパージする.
- ④ 本試験ラインへバルブを切り替え、アンモニアガスをマスフローコントローラ(MFC)で制御し、試料へ供給する.
- ⑤ 試料を通ったOutガスを検知器で分析し,水素(H2)生成 量をモニタリングする.
- ⑥ 試験後,配管に残ったアンモニアガスをArパージにて除去し容器前後のバルブを閉め試験容器を設備から取り外す.
- ⑦ 試験容器を再度Ar充填したグローブボックス内に入れる.
- ⑧ 試験容器から試料を取り出し,重量を確認する. 試験後試料の重量を試験前試料の重量から差し引くことで,反応に伴う重量増加=A(mg)を実測し,100%反応したと仮定した場合のアミド化による重量増加分をB(mg)として,Bに対するAの割合を百分率で表すことにより,試料の反応率(=AMMONOLYSIS反応の進行具合)とする.
- ⑨ 試験後の試料をX線結晶構造解析(XRD.固体中に含まれる成分や結晶構造の情報が得られる)によって分析し、アミド化合物が生成していることを確認する.

特集・取り組

Ъ

AISAN TECHNICAL JOURNAL 2025 No.8

特集

3.結果

構築した装置を用いて実施した流動アンモニアガス中に おける水素化カリウム(KH)のAMMONOLYSIS反応の評 価結果を図7に示す.

7 試料下流のアンモニア量の測定結果

上記グラフ図7は図6に示した装置内の検知器にて試料 下流のアンモニア濃度を測定した結果となっている.

アンモニアを試料に導入開始した時点(30分程度経過時)と比較して,30分~120分経過時点ではアンモニアの 濃度が減少していることが確認できる.この結果より,流動 アンモニアガス中においてもAMMONOLYSIS反応が進 行し,アンモニアが消費されて水素が生成されていること がわかる.

また,AMMONOLYSIS反応の進行度を確認するため, 評価前後の試料についてXRDによる分析を行った.結果を 図8,図9に示す.

図8 評価前のXRDの測定結果

KHのAMMONOLYSIS反応は以下の反応式で表される.

$KH + NH_3 \rightleftharpoons KNH_2 + H_2$

したがって、AMMONOLYSIS反応が進行している場合, アンモニアが消費され、KHがカリウムアミド(KNH2)へ変 化し、水素が生成される.

実際に, XRDを用いて確認を行った. 図8, 図9のXRDの 測定結果を比較すると反応前に確認できていたKHのピー クが消失していることがわかる.また,反応後は反応式が示 すように, AMMONOLYSIS反応によってKNH2が生成さ れていることが確認できる.

以上の測定結果より、流動アンモニアガス中においても AMMONOLYSIS反応が進行することが確認できた.

4.課題と解決策

今回の結果より,流動アンモニアガス中での AMMONOLYSIS反応によって得られた水素を燃焼させる ことで発電システムの暖機に利用する目途付けができた.

ただし、流動アンモニアガス中でのAMMONOLYSIS反応によって生成した水素には、一定量の残存アンモニアが 含まれており、このアンモニアが残存する水素を燃焼させた場合、NOxが発生するという課題が残る.

図10に残存アンモニア量と発生するNOx量の関係を示す.

この課題についてはAMMONOLYSIS反応後にアンモ ニア吸着による除去を行うことでNOxを発生させない暖

図10 残存アンモニア量と発生NOx量の関係

図11 NOx低減にむけて検討中の暖機システム

巻頭言

取り組み

機システム図11を構築した.

また, AMMONOLYSIS反応に使用するアルカリ金属は 危険性が高いため, 使用するアルカリ金属の少量化も課題 となる.

この課題については、図12に示すように暖機に使用する 水素の生成方法を全てAMMONOLYSIS反応で行わず、 なるべく早く改質器へ切り替えることが望ましく、システム の温度毎で水素生成方法を変更することで、必要なアルカ リ金属を少量化することで対応する、以下に、システム温度 と水素生成方法のシステム案を記載する、

<STEP1>

- ・温度 常温~350℃程度
- ・水素生成方法 AMMONOLYSIS反応
- ・詳細 燃料電池発電の起動時,図11.に示すシステムにて,常温で水素生成し,燃焼を実施.システム内のアンモニア改質器が作動できる温度(350℃程度)まで昇温.

<STEP2>

- ・温度 350℃~550℃
- ・水素生成方法 アンモニア改質器
- ・詳細フ
- アンモニアの供給先をAMMONOLYSIS反 応からアンモニア改質器に変更.アンモニア 改質器で改質できなかったアンモニアは吸 着にて除去.水素燃焼による暖機を実施.

<STEP3>

- ・温度 550℃~700℃
- ・水素生成方法 アンモニア改質器
- ・詳細 STEP2同様アンモニア改質器で水素生成を 行う.燃焼に使用していた水素の一部を燃料 電池に供給し,早期発電を開始.発電による 熱も利用して700℃まで昇温を実施.

5.まとめと今後

アンモニアを燃料としたシステムにおいて,アンモニ アは常温で燃焼しにくいことから,水素など別の燃料 を用いてシステム暖機をすることが多い.これに対し, AMMONOLYSIS反応を用いることで,アンモニアを常温 で水素に変換し,アンモニアだけでシステム暖機ができる 可能性を検証した.今回の評価では,動的なガス供給条件 においてもAMMONOLYSIS反応によりアンモニアを水 素に変換できることが確認できた.また,アンモニア起因の NOxはアンモニア吸着を追加することで対策可能である ことが分かった.

今後はAMMONOLYSIS反応を利用したシステムを最 適化し、アルカリ金属を少量化させ、かつ安全対策を構築 する.その上で検討中の低温起動システムの実証を行い、 ヒータを使用しない暖機方法の確立を目指す.また、FC発 電だけでなく、燃焼器の起動用火種など技術活用を検討し ていく.

参考文献

(1) H. Yamamoto, H. Miyaoka, S. Hino, H. Nakanishi, T. Ichikawa, Y. Kojima, Recyclable hydrogen storage system composed of ammonia and alkali metal hydride, International Journal of Hydrogen Energy, 34, 9760-9764, 2009.

著者

広島大学

寒川 太郎 -ボンニュートラル システム開発

宮岡 裕樹 _{広島大学}

市川 友之 ハイドロラボ 株式会社

論文

取り組

特集·論文

村井 真司 岩田 伸二 都築 康洋 牧野 勝彦

巻頭言

論文

特集・取り組

Ъ

特集・受賞技術

論文

ガソリン蒸気に対する環境規制強化に伴い, PHEVなどキャニスタパージ量の少ない車両で は密閉タンクシステムが拡大している.密閉タンクシステムにおいてはタンク圧力を封鎖す るための圧力制御弁が必要となる.本稿では, ステッピングモータを使用した小型軽量な密 閉タンク封鎖弁について紹介する.

図2

密閉タンクシステム

1.まえがき

大気汚染を防止するためにエバポエミッションに対する規 制が一層強化されている.車両におけるエバポシステムにつ いてはガソリンベーパをキャニスタで一時捕集し,走行中の エンジン負圧により吸着ベーパをパージして燃焼処理する ことで成立している.しかし,市場では環境にやさしく燃費効 率にすぐれたPHEV,HEV等の車両が増加しており,それら の車両はキャニスタパージ量が少なくなるためエバポ規制 を満足することが難しくなってきている.

近年はパージの少ない車両で規制を満足する技術とし て密閉タンクシステムの採用が拡大しており、そのシステ ムではタンク圧力を調整する制御弁が必要となる、本稿で は、ステッピングモータを用いた小型軽量なタンク封鎖弁 を開発したので紹介する.

図1 従来のシステム

2. 密閉タンクシステムの構成

2.1. 従来システムと密閉システムの比較

まず,従来システムの例を図1に示す.燃料タンクから発生 したガソリンベーパはキャニスタに常時捕集され,走行中の エンジンの吸気管負圧を利用してキャニスタから捕集ベー パをパージして燃焼処理を行うものである.

次に密閉タンクシステムの例を図2に示す.この例では封 鎖弁は燃料タンクとキャニスタの間に配置されており,必要 な時以外はガソリンベーパをキャニスタに吸着させない構 成となっている.また,タンク圧力を常時モニタできるように 圧力センサを燃料タンクに備えている.

2.2. 封鎖弁の機能

封鎖弁に要求される機能は大きくは下記①~③であり,市場での車両状況(駐車時,走行時,給油時)に応じてそれぞれ機能が必要となる.

● シール機能 〔駐車時〕

- 2 リリーフ機能 〔駐車時〕 (メカリリーフ弁によるタンク保護)
- ③ 流量制御機能 〔走行時,給油時〕

表1に状況に対する必要機能を示す.

表1 状況に対する必要機能

Situation	Parking	Driving	Refueling
	 Seal function Relief function 	3 Flow control function	3 Flow control function
Required function	Seal up to specified pressure, release pressure if exceeded	Control flow rate according to purge to the purge	Depressurize before refueling, hold fully open to secure flow path

3. 開発コンセプト

3.1. 開発品の概要

主要機能であるシール機能と流量制御機能を満足するために下記の方策を織り込み実施した.

●小型ステッピングモータの採用

- ●送りねじ機構を用いたストローク制御
- ●2体構造バルブの採用
- ●メカリリーフ弁の一体化
- 図3に開発品の概要を示す.

図3 開発品の概要 Stepping motor valve Mechanical relief valve To Tank To Canister

現在,製品化されている封鎖弁としては電磁弁タイプが主 流である.各項目についてステッピングモータとの比較を表 2にまとめた.

表2 電磁弁タイプとの比較表

Actuator type	Solenoid	Stepping motor
Refueling	A Valve opening hold requires energization	O No energization required for valve open holding
Driving	Flow control by on-off Must be responsive	O Flow control by stroke
Response	0	
Leakage	0	0
Size	Δ	0
weight	×	0

電磁弁タイプは応答性に優れるが給油時の通路を確保 するため体格と重量が大きくなりがちである.ステッピング モータは応答性は劣るが送りねじ機構を用いてストローク 制御が可能であり小型化できる.

図4 ステッピングモータの概要 Rotation Feed screw Two-body valve Stroke

図4にモータ部の概要を示す.バルブ全開となる給油時は ストローク量を確保することで低圧損を達成し,送りねじの ピッチを小さくすることで微小流量制御性を両立させた.ま た,送りねじのリード角を小さくすることで軸負荷に対して無 通電保持することが可能となり給油中の電力消費量を低減 することができる.

図5にねじ角度の関係を示す.

巻頭言

論文

3.2. バルブ構造

ステッピングモータは位置検出するためのセンサを持た ずに制御原点からのステップ数で位置決め制御ができると いう特性がある.そして,そのためには制御原点決めのイニ シャライズが必須となる.

イニシャライズはバルブを突き当てて実施するがバルブ にはシール機能を満足するためにゴム部材が必要となる.そ の場合にはゴムを突き当てすることになるためモータ推力 のばらつきによりゴムの変形量がばらつき,安定したシール 機能を確保できないことが懸念される.そこでイニシャライ ズとシール機能を両立させるために2体構造のスプリング 付きバルブを採用した.

図6にバルブ構造を示す.送りねじ部を有するスクリュガイ ドの端面をシート部に突き当てすることで安定してイニシャ ライズができる.バルブ部はスクリュガイドの内側にスプリ ングと共に内蔵される構造となっており,スプリングカによ り常時安定してシール機能を確保できる.スクリュガイドと バルブはそれぞれに嵌合する爪部を持っており,所定量をス トロークさせることでシートからバルブが離脱する.

I. Initialize
Serve guide
Spring
Valve
Seat
Bump into the seat
3.Start valve opening
4. Fully open
4. Fully open
Mating

4. 開発品の性能

4.1. シール性

2体構造のバルブとしたことで安定したシール性を確保す ることができた.モータとシート部に傾きがあってもバルブ 部分がシートに追従することが可能となっている.

図7に傾きに対するシール性を示す.

図7) 傾きに対するシール性

4.2. 微小流量制御

本開発品はモータ+送りねじによるストローク制御を採用 したことにより微小な流量制御が可能となった.結果として 微小パージ量の車両状態でも圧抜きが可能となった.図8に 電磁弁タイプとの流量特性の比較を示す.電磁弁タイプで 微小流量制御するにはストロークを確保した上で高応答に する必要があるため不利となる.

図8 流量特性の比較

4.3. A/F荒れの抑制

走行中の流量制御例としてエンジンのパージに合わせて タンク圧抜きをする場合を想定する.電磁弁タイプはバルブ の開弁時間制御により圧抜きするため大流量の間欠流れと なり,燃料フィードバック制御が追い付かずにA/F荒れが大 きくなる傾向となる.対してステッピングモータタイプはスト ローク制御することで小流量の連続流れとなり,フィードバッ ク制御が追い付いてA/F荒れを小さくすることが可能であ

取り組

る.結果としてドライバビリティの向上が期待できる. 図9に制御方式によるA/Fの違いを示す.

制御方式によるA/Fの違い 図9

4.4. 低圧損と小型化の両立

低圧損に対してはバルブストロークを確保することで達成 している.小型化についてはステッピングモータを採用した ことで主流となっている電磁弁タイプに対して40%以上の 軽量化を実現,世界最軽量レベルを達成したと言える. 図10に圧損と重量を示す.

図10 圧損と重量

5.まとめ

ステッピングモータを用いることで小型軽量なタンク封鎖 弁を開発することができた.

- 2体構造バルブを開発し、ステッピングモータのイ (1) ニシャライズと安定したシール性を両立した.
- (2)ストローク制御とすることで微小流量制御が可能 となり,低圧損かつ軽量化を実現した.

最後に本製品を開発するにあたり多大なご支援,ご協力を 頂いた全ての関係者の皆様に深く感謝申し上げます.

参考文献

- (1) 品川昌慶ほか:密閉タンクシステム用封鎖弁の開発,2006年春季大会学 術講演会講演予稿集 20065285
- (2) 安江昭成ほか:大流量で高密閉なDCモータ式EGRバルブの開発,2017 年春季大会学術講演会講演予稿集 20175336

著者

第1製品開発部

技術統括部

都築 康洋

第1製品開発部

巻頭言

取り組み

論文

取り組み

キャニスタの樹脂材料変更

坪井 俊樹 山本 典永 早川 昌光

CO₂ 排出量が少ないポリプロピレンを採用、 CO₂ 低減に効果を発揮しています

車は、走行中、駐車中、給油中に多くの炭化水素 (HC)を大気に放出しています。この排出ガスは総称し てエバポ(エバポレーティブエミッション)と呼ばれ、 各国・地域などで排出量を規制する法規が敷かれていま す(欧州:EURO6、米州:LEV-II など)。キャニスタ は、これらの法規を遵守するための環境製品で、燃料タン クと大気をつなぐ経路に設置され、タンク内で気化したガ ソリンベーパを活性炭に吸着させることで、HCの車外へ の放出を抑制します。キャニスタを構成している材料は主 に活性炭と樹脂で、この樹脂には従来「PA66(ポリアミ ド)」が用いられていました。

実績ハイライト

〈コンベタンクシステム (ORVR)〉

この樹脂材を、製造工程が簡素でCO₂排出量が少ない PP-GF(ガラス強化ポリプロピレン)に置き換えて、さら なる環境指標の向上を図ったのが今回の取り組みです。

本材料の強度は従来品のPA66と同等以上で、変形量 (負荷に対する伸び)は小さくなることから板厚低減も同時に織り込みました。

懸念点としてガソリンベーパの透過が想定されました が、得意先と市場を模擬した新たな評価条件を設定し規制 値に対し問題のないレベルであることを検証し、材料置換 を実現しました。1台あたりのCO₂排出量36%減、質量 9%減など、商品力を大きく向上させています。

01 低 CO₂材に置換

燃料タンクシステム(下図)内のキャニスタの樹脂材を PA66(ポリアミド)から PP-GF(ガラス強化ポリプロピレン) へ変更し大幅な CO₂ 排出量削減、質量低減を実現しました。

〈樹脂材置換の部位〉

巻頭言

特集・論文

論文

取り組

02 代替材料の特性

PP-GF (ガラス強化ポリプロピレン)は、 従来品の PA66 などと比べて製造工程が シンプルで、材料ごとの CO₂ 排出量でも 優れています。

〈強度物性比較〉

◇本資料に記載されたデータは、特定条件で得られた測定値の代表例です 株式会社プライムポリマー様ご提供

特集・論文

カーボンニュートラル燃料対応電動ポンプ

1.発明の概要

2050年カーボンニュートラル社会に向け、図1に示す ように自動車の電動化が進むとともに、エンジン搭載車 においても、化石燃料からCO₂(二酸化炭素)とH₂(水 素)を合成して製造される合成燃料や、生物体の持つエ ネルギーを利用したバイオ燃料のようなカーボンニュート ラル燃料にシフトしながら、ハイブリッド自動車(以下、 HEV) / プラグインハイブリッド自動車(以下、PHEV) を主として大きな比率を占めることが予想さ

HEV/PHEV を含めたエンジン搭載車では、燃料タンク 内の燃料をエンジンに圧送する燃料ポンプが設置されてい る。燃料ポンプでは HEV/PHEV やカーボンニュートラル 燃料の普及に伴い、近年では図2に示すような HEV/PHEV による燃料劣化や、バイオ燃料による水分混入に対する対 応の必要性が生じている。

燃料ポンプの腐食が進むと、燃料ポンプモータの効率が 低下したり、エンジンに必要な燃料量が供給されなくなる。 その結果、燃費の悪化やエンジン出力の低下につながる。

取り組

論文

燃料ポンプは電力消費の少ないブラシレスモータ式があ り、その構成の中で最も腐食対策が難しい部位が図3に示 す磁石である。

一般的にモータで使われるネオジム磁石は主成分が鉄の ため腐食に弱い。腐食に強い磁石として図4に示すフェラ

燃料ポンプ断面図 図3

イト磁石があるが、硬くて脆いためロータへの固定が難し いことや、磁力がネオジム磁石より弱いため、磁石とモー タコアのクリアランス拡大によるモータ性能低下が大きい 等の課題がある。

2. 従来発明等の課題と開発ニーズ

特開平 6-205572 に代表される従来発明では、磁石に小 径部を設け、小径部に弾性部材勘合部の爪を取付け磁石を 保持する。

この構成では、多様な条件において安定した固定を行う 上で、右記のような課題がある。

◆弾性部材が柔らかい材質:組付時に勘合部の爪が変形し たり、モータ回転時の遠心力に対し磁石の固定力が不足⇒ 磁石が動く可能性があり、クリアランス拡大の必要有。 ◆弾性部材が硬い材質:弾性部材の圧入代大⇒組付時に脆

い磁石が割れる可能性がある。

3.発明等の特徴

本発明は図5に示すロータへの磁石固定方法により、 従来発明の課題解決が可能となる。

- 構成 (a) マグネットホルダの梁部分を変形させ、 永久磁石を径方向の付勢力で保持
- 構成 (b) 貫通穴を樹脂部材で封止。ロータ回転時の 遠心力でマグネットホルダが動かないよう固定

磁石固定方法 図5 外周部分 基部┥ 梁部分 内周部分 マグネットホルダ 周壁部 樹脂部材 永久磁石 バック シャフト ヨーク 🚱 規制部材

巻頭言

取り組

論文

脆いという特性を持つフェライト磁石に対し、マグネットホルダに変形し易い梁部分を設けて弾性を持たせることで、組付時には周壁部が磁石に力を加えず保持。組付後には梁部分がそれ以上変形しないよう、貫通穴に樹脂部材で 封止した。

上記固定方法により、組付時の圧入条件のバラツキが生 じても安定した組付が可能となり、磁石の腐食や動くこと を想定したクリアランス拡大も不要となった。

その結果、ネオジム磁石を採用するモータに相当する高 いモータ効率確保と、磁石の腐食対応が両立できるように なった。(図6、図7参照)

本発明により、①燃料中の酸成分や水分混入燃料環境下 での腐食対応のために、表面処理等を実施する必要がなく なり、廃液処理等による環境負荷が低減可能である ②産 地が特定国に集中するネオジム等のレアアースを使用しな いため、供給不安の解消も達成する という副効果を得る ことも可能となる。

本発明を採用したブラシレスモータ式燃料ポンプは、カー ボンニュートラル社会の多様な燃料環境に、世界初で標 準(特別な表面処理をしない)対応した燃料ポンプとして 2017年より量産を開始し、カーボンニュートラル社会に 向け貢献しています。

図7 腐食性比較結果

Ъ

特集・論文

巻頭言

論文

燃料電池システム用エア制御弁

1. 発明の概要

2050年カーボンニュートラル達成に向け、利用時に CO2を排出せず、また資源調達先の多様化を通じてエネ ルギーセキュリティに寄与する「水素」が注目されており、 水素を燃料とする燃料電池システムは、図1に示すように、 燃料電池自動車(FCV)として普及が予測されているほ か、定置型の発電装置としての用途も期待されている。

世界の車種別販売台数の将来予測(出展:SPEEDA総研)

燃料電池システムには、水素の供給通路の他に、水素と の化学反応で電気を発生させるエアの供給通路があり、エ アの供給通路には「エア制御弁」が備えられる。 (図2参照)

エア制御弁は、必要な発電量を得るためのエア流量の制 御を行うとともに、発電停止時にはエアの封止を行い、燃 料電池の酸化劣化による発電効率の低下を抑制する役割を 担っている。

※接続の一例 FCモシ 1-1 FCウォータ

| 燃料電池システム図(出展:TOYOTA)

エア制御弁には以下の特性が求められるため、構成とし て二重偏心弁タイプを選定した。(図3参照) ①開口面積が大きく、大流量の要求にも対応できる。 ②閉弁時に、弁体が弁座に当接する時の摩耗が生じにくい。

弁構成の特性比較

ポペット弁 ボール弁 重偏心弁 偏心バルブ(弁体) 弁座 弁座 構成 弁体 出展:日本バルブ工業会 弁体 弁座 特 1 Ο × 0 性 0 (2) 0 ×

2. 従来発明等の課題と開発ニーズ

二重偏心弁の従来発明として特開2012-72793 号の形態があるが、非駆動時(モータの通電 OFF 時)には、 リターンスプリングのスプリング力により、回転軸と軸受 の隙間の範囲内で回転軸が傾いて、弁体が弁座から浮き上 がる荷重(浮き荷重)が発生し、封止機能が低下する課題 があるため非駆動時でも封止機能が確保できる二重偏心弁 のニーズが高まっていた。(図4参照)

特集・受賞技術

巻頭言

特集・論文

特集・取り組

 \mathcal{F}

取

り組

H

図2

3. 発明等の特徴

非駆動時の浮き荷重が、回転軸に設ける「全閉ストッパ 部」と「リターンスプリングフック部」の相対位置で決定 されることに着目し、構成の考案を行った。回転軸と直交 する xy 座標系を設定し、xy 座標の+-方向毎に、座標系 を第1象限〜第4象限に区分した場合、「全閉ストッパ部」 を第1象限、「リターンスプリングフック部」を第3象限に、 対角線上に配置する構成とすることで、浮き荷重を、弁体 を弁座側に押し当てる荷重(押し当て荷重)に転換すると ともに、押し当て荷重を最大化できるため、エアの漏れ流 量が低減され、封止機能を確保することができた。 (図5、図6参照)

<本発明の特徴>

新たな機構を追加することなく以下の特有の 効果が得られる。

(1) 浮き荷重を押し当て荷重に転換できる。

(2) 押し当て荷重を最大化できる。

本発明により、二重偏心弁タイプのエア制御弁において、 発電停止時のエア封止機能を確保することで、燃料電池の 酸化劣化による発電効率の低下を抑制できた。

このエア制御弁を搭載する燃料電池システムの普及を通 じて、CO₂の排出削減によるカーボンニュートラル社会 の構築に貢献しています。

②発明技術の動き:

モーターの電源が入っていないときの挙動(押し当てる力の発生)

図5 非駆動時の挙動

坂本 竜也 内木 英喜 川上 太知

要旨

電気自動車の普及に伴い、バッテリ充電の普及が進んでいる、バッテリ充電にはワイドレンジ かつ高効率な動作が求められ、電力変換器のマルチフェーズ化及び、駆動相数を動的に切り 替えることで実現可能である.しかし、駆動相数切り替え時は電源の状態が大きく遷移し過 渡的な動作となる.本技報では駆動相数切り替え前後の状態から状態遷移量を推定し、過渡 的な動作を抑制する新たな制御を提案した、回路シミュレータ及び実機での検証で妥当性を確認した。

1.はじめに

近年.カーボンニュートラルの実現に向けた EV 化が進 んでいる. EV 化に伴い, バッテリ充電に注目が集まって おり,充電時の力率を改善する AC-DC コンバータである PFC (power factor correction) コンバータの需要が高 まっている.

PFC コンバータには動作領域のワイドレンジ化及び高効 率化が求められており、その方策の一つとして電力変換器 のマルチフェーズ化が挙げられる.マルチフェーズ化によ りスイッチングデバイスに流れる電流を分散することがで き. 導通損失の低減が可能となる. 結果として. 高出力帯 での高効率化が可能となる⁽¹⁾.しかし,低出力帯において はスイッチング損失が導通損失より支配的となるため、構 成するデバイスの数が増加すると効率が悪化する.出力帯 で最適な駆動相数が変化するため、動的に駆動相数を切り 替える制御が必要となる⁽²⁾.しかし,従来の駆動相数切り 替え制御の場合、駆動相数切り替え時に電力変換器の状態 が大きく遷移するため. 状態遷移量に応じた出力電圧の変 動が発生する.

本稿では、駆動相数を切り替えた場合に発生する電力変 換器の状態遷移を推定し、抑制する新たな駆動相数切り替 え制御について報告する.

2.マルチフェーズ方式PFCコンバータ

2.1. PFCコンバータ

PFC コンバータは商用電源などの AC 電源から DC の電 流,電圧を出力させる機器である. AC から DC に電力を 変換する際、力率が低い場合、無効電力の発生と歪みによ る高周波のノイズが発生する. 出力の高い電源の場合, ひ ずみの影響が深刻化し.他の機器の動作に影響を与える可 能性がある. PFC コンバータは力率改善機能を有している ため,無効電力と歪みの課題を解決することができる.また, IEC 61000-3-2 の規格にて AC アダプタ等には 75W 以 上出力する機器に関して搭載が義務づけされており、PFC コンバータ回路の需要がさらに高まっている.

PFC コンバータにはさまざまな回路方式があり今回は部 品点数が少なく高効率化が見込める Bridgeless Totem pole 型 PFC コンバータを採用した.図1に採用した PFC コンバータの回路図を示す.スイッチ S1a, S2a には次世代 パワー半導体で逆回復電流が小さい GaN-HEMT を使用し た. スイッチ S_{1a}, S_{2a}を PWM 制御することで入力電流及 び出力電圧を制御している. PFC コンバータの動作方式は 一般的に連続導通 (CCM) モード, 電流臨界 (BCM) モード, 電流不連続 (DCM) モードが挙げられるが, 高出力駆動時 の損失低減のため、インダクタに流れる電流のピーク値が 小さい CCM モードを採用した. CCM モードの PFC コン バータを制御するため、図2のような制御系を構築した. 図 2 に記載されている PFC コンバータの各伝達関数 ΔIL/ $\Delta D \ge \Delta V_o / \Delta I_L$ は、以下の式で表される ⁽³⁾.

春頭言

特集・論文

取り組

$$\frac{\Delta I_L}{\Delta D} = \frac{V_{ac}}{R_o (1-D)^3} \times \frac{2 + R_o \times C_o \times s}{\frac{L \times C_o}{(1-D)^2} s^2 + \frac{L}{R_o (1-D)^2} s + 1} \quad \cdots \quad (1)$$
$$\frac{\Delta V_o}{\Delta I_L} = \frac{V_{ac} \times R_o}{2 \times V_o} \times \frac{1}{R_o \times C_o \times s + 1} \quad \cdots \quad (2)$$

ここで V_{ac} は入力電圧実効値, V_{o} は出力電圧実効値,Dは duty 比を表している.

図 2 より PFC コンバータの制御系には大きく二つの制御 ループが存在する.二つの制御ループのうち,内側に形成 しているループは力率改善制御であり,外側に形成されて いるループは出力電圧制御である.また,これらのループ とは別に常に出力電圧補償器の後に商用電源の周波数の外 乱が制御系に乗算される.各ループは干渉しており,また 商用電源の周波数の外乱についても出力電圧制御に干渉す る.そのため,各ループと外乱の干渉を受けないよう各制 御の補償器を適切に設計する必要がある.

これらの制御設計手法を考慮し,高出力に対応させるべく, PFC コンバータのマルチフェーズ化に取り組んだ.

図3にマルチフェーズ方式のPFCコンバータの回路図 を示す.マルチフェーズ方式の検証は,最も単純な2相 PFCコンバータで実施した.スイッチS1b,S2bで1相目の 力率改善,スイッチS3b,S4bで2相目の力率改善,スイッ チS5b,S6bにて全波整流を行っている.また各相に流れる 電流が均一となるよう電流バランス制御を導入している.

マルチフェーズ化することにより各相に流れる電流を低減 させることができ、結果として導通損失の低減が可能とな る.またインターリーブ動作によりインダクタ L₁, L₂ を結 合インダクタに置き換えることで、直流重畳磁束を打ち消 すことが可能となり、インダクタの小型化も見込める⁽⁴⁾.

図1 単相Totem-pole型ブリッジレスPFCコンバータの 回路図

2.2. 駆動相数切り替え制御

マルチフェーズ化により高出力帯での高効率駆動が実現 できるが、デメリットとして搭載するスイッチングデバイス の数が増え、スイッチング損失が増加する.導通損失より スイッチング損失の割合が支配的な低出力帯においては効 率が悪化するため、出力に応じて適切に駆動相数を切り替 えて動作させる必要がある.

図4に検討した PFC コンバータの効率曲線を示す.出 力電力が600W 付近を超えると,導通損失の損失割合が 支配的となり,2相駆動時により高効率で動作する.その ため,600W 付近で駆動相数を切り替える必要があるが, 600W をしきい値とし,駆動相数を切り替えるとチャタリン グが発生する恐れがある.そのため,切り替えるしきい値 にはヒステリシス性を持たせておく.

駆動相数の切り替えにより,ワイドレンジかつ高効率での 動作が実現できるが、従来の制御系で駆動相数を切り替え ると、電力変換器の状態が大きく遷移するため、状態遷移 量に応じた出力電圧の変動が発生する.出力電圧の変動が 大きいほど、変動を抑制する機能を持つキャパシタが大型 化するデメリットがある.そのため、状態遷移量に応じた出 力電圧の変動は可能な限り低減する必要がある.DC-DC コンバータにおいてはこの課題に対しての改善制御が提案 されている⁽⁵⁾.PFC コンバータの出力電圧制御の応答性 は商用電源の周波数より低く設計しなければならないため、 DC-DC コンバータに比べ、出力電圧の変動がより顕著に 表れるが、検討されていない.

受賞技術

取り組

巻頭言

特集・論文

論文

3.提案する駆動相数切り替え制御

本研究にて PFC コンバータの駆動相数切り替え時の変動 を抑制するため、新たな制御系と動作フローを構築した. 図5に新たな制御系、図6に制御の動作フローをそれぞれ 示す.駆動相数切り替えのため、まず PFC コンバータの出 力電力を確認する.この時の出力電力は、回路に搭載した 出力電圧センサと出力電流センサから得たそれぞれのセン サ値を乗算した値である.切り替えのしきい値を計算した 出力電力値が超えた場合、S1をトグルさせる.そして、電 力変換器の状態遷移量の計算を実施する.状態遷移量は駆 動相数切り替え前に各相から出力された電流値 I_{o phase before} と駆動相数切り替え後に各相から出力される電流値 I_{o phase} after の偏差から算出する. I_{o phase before} 及び I_{o phase after} は以下 の式より算出した.

$$I_{o \ phase \ before} = \frac{I_{o \ before}}{N_{before}} \cdots 3$$
$$I_{o \ phase \ after} = \frac{I_{o \ after}}{N_{after}} \cdots 4$$

 $I_{o\ before.}$ N_{before} はそれぞれ駆動相数切り替え前の出力電流のセンサ値と駆動相数を示し、 $I_{o\ after}$, N_{after} はそれぞれ駆動相数切り替え後の出力電流のセンサ値と駆動相数を示す.

状態遷移量の推定に各相から出力される電流値を用いた のは,駆動相数の切り替え前後の状態の違いを正確に把 握するためである.マルチフェーズの場合,各相は並列接 続されているため、入力電圧もしくは出力電圧を用いて駆 動相数の切り替え前後の状態遷移量を推定することは難し い.入力電流の場合は商用電源の周波数で振動している. 切り替わり前後の状態をセンシングする場合、センシング できるのは電流の瞬時値である.切り替わるタイミングで センシングされる入力電流値が変化する. またゼロクロス で切り替わった場合、状態遷移量は非常に小さくなり、正 しくセンシングできない可能性がある.よって、入力電流 を状態遷移量の推定に用いることは難しい. 各相に流れる 出力電流を用いる場合は、③式、④式で推定することが可 能で、出力電力の変化と駆動相数の変化の両方の変化を考 慮した状態遷移量を推定することができる. そのため, 各 相から出力される電流値を状態遷移量の推定に用いた.

状態遷移量の計算が完了したタイミングで S2 をオンし, フィードフォワード(以下, FF)制御を開始する.出力電 圧変動の抑制が確認できたタイミングで, S2 をオフすると FF 値に応じた電力変換器の状態遷移が再度発生し,出力電 圧の変動が生じる.そのため,FF 制御中に,出力電圧が大 きく変動しないよう,FF 値を徐々に減少させる必要がある. FF 値がゼロとなるタイミングで S2 をオフさせることで 状態遷移が生じず,制御系が安定した状態で FF 制御を停止させることが可能となる.

提案した FF 制御の妥当性を回路シミュレータ及び実機 試験にて確認した.

4.結果

回路シミュレータを用いて、出力電力 1100W での定常 動作時に、駆動相数を1 相から2 相に切り替えた.その時 の FF 制御による効果を確認した結果を図7 に示す.提案 した FF 制御を導入することで、FF 制御中は制御系が FF 項の影響を受け目標値に対して偏差がある状態で動作し た.しかし、力率改善制御が機能した状態で駆動相数切り 替え時に発生する出力電圧変動の振幅を 1/3 倍ほどに抑制 できた.

次に実機に FF 制御を導入し、スモールモデルで同様の 効果が得られるか確認した.実機での効果確認の結果を図 8 に示す.出力電力 40W での動作時に駆動相数を1 相か ら2 相へ切り替えた場合においては、図8 に示すようにシ

取り組み

低負荷変動時の実機での測定結果 図8

ミュレーションと同様に、FF 制御により出力電圧をおよそ 1/3 倍ほどに抑制することができた.しかし,出力電力を 40Wから80Wに変動させ、駆動相数を1相から2相へ 切り替えた場合においては図9に示すように目標値に追従 するまでの時間が増大した.これは,負荷変動から FF 制 御が開始する前に発生した変動を抑制できず、変動が発生 している状態から変動を抑制する FF 制御が開始したため, 目標値に追従するまでの時間が長くなったと考えられる.

そのため、負荷変動から FF 制御が開始するまでの時間 を最適化することで、低負荷変動時と同様に出力電圧の変 動を抑制することが可能になると考えられる.

5.まとめ

本技報ではマルチフェーズ方式 PFC コンバータの駆動相 数切り替え制御システムの構成と効果について示した.相 数切り替え前後の状態遷移量の推定に出力電流センサ値を 活用することで出力電力の変化と駆動相数の変化の両方を 考慮した状態遷移量を推定することが可能となった. この 状態遷移量をもとに FF フォワード制御を構築することで, 低負荷変動時に駆動相数が切り替わった場合において、出 力電圧変動の振幅を 1/3 倍ほどに抑制することができ、本 提案手法の有用性を確認することができた.

参考文献

- (1) M. Marcinek, M. Hołub:Multiphase, synchronous GaN buck converters - efficiency based selection of the number of phases, EPE'18 ECCE Europe, pp3-7 (2018)
- (2) P. Zumel, C. Fernández: Efficiency improvement in multiphase converter by changing dynamically the number of phases, 37th IEEE Power Electronics Specialists Conference, pp1-6 (2006)
- (3) G. E. Mejía-Ruiz, N. Muñoz-Galeano: Modeling and development of a bridgeless PFC Boost rectifier, Revista Facultad de Ingeniería Universidad de Antioquia, Vol. 82, pp9-21 (2017)
- (4) J. Imaoka: Characteristic Analysis and Design of Boost Chopper Circuit using Coupled Inductor for Electric Vehicle, Journal of the Japan Institute of Power Electronics, Vol. 39, pp. 55-64 (2013)
- (5) A. Costabeber: Digital Time-Optimal Phase Shedding in Multiphase Buck Converters, IEEE Transactions on Power Electronics, Vol. 25, pp. 2242-2247 (2010)

著者

研究開発部

研究開発部

川上 太知 大阪公立大学 工業高等専門学校

巻頭言

特集・論文

特集・取り組

H

特集・受賞技術

論
▽

長尾 崇弘 内木 英喜 七森 公碩

要旨

巻頭言

特集・

論文

特集・取り組

Ъ

特集・受賞技術

論
▽

近年、パワエレ機器において次世代半導体が注目されており、GaN は高周波駆動による電 力変換器の小型化が期待されている. しかし, GaN のゲート耐圧は 6 V 程度であり, スイッ チング時の電圧振動によって耐圧破壊する懸念がある。本研究では、デバイスの ON 時に おいてパッケージや配線の寄生成分を含めたモデリングを行い、デバイス内部のゲート電圧 振動を推定する手法を提案する. 実測ではゲート電圧はソースインダクタンスの影響が大きいため耐圧 を超えて振動していたが、モデルより内部のゲート振動は小さく耐圧の範囲内であることを推定した.

1.はじめに

近年、気候変動の影響が顕著になる中、環境への配慮が ますます重要視されている. それに伴い, カーボンニュー トラルへの取り組みが世界中で加速しており、日本におい ても 2050 年カーボンニュートラルに伴うグリーン成長戦 略が宣言された⁽¹⁾.カーボンニュートラルの達成に向けて パワエレ技術の進展が大きく期待されており, SiC や GaN などの次世代半導体の普及は、パワエレ機器の普及や省電 力化に大きく寄与する⁽²⁾⁽³⁾.これらの次世代半導体は、従 来の Si 半導体に比べバンドギャップや絶縁破壊電界などの 物性に優れる.特に GaN 半導体は HEMT 構造をとれるこ とが知られており、AlGaN/GaN 界面に形成される 2 次電 子ガスを電流経路として使用することが可能となる⁽⁴⁾.こ れにより同じ ON 抵抗デバイスにおいて入力容量を下げる ことが可能となり、高周波駆動による電力変換器の小型、 高効率化が期待される⁽⁵⁾.

電力変換器において、パワーデバイスの ON/OFF によっ て電力制御が行われる. ON 時は損失を低減するため電流 経路のオン抵抗を十分小さくする必要があり、ゲートソー ス間に十分な電圧を印加し電流経路を確保するオーバドラ イブが用いられる. GaN の場合,オーバドライブを行うた めには 4.5 V 以上の電圧が必要となる一方, ゲート耐圧は 6 V 程度と小さく、印加電圧と耐圧までのマージンが小さ い⁽⁶⁾.その結果、ゲートソース間耐圧に余裕がなく、高速 スイッチングによる電圧サージやその後の電圧振動によっ て容易に耐圧を超えてしまい破壊する懸念がある.この課 題を解決するため、半導体メーカでは、瞬間的なゲート耐 圧を規定したり⁽⁷⁾,ゲート耐圧を高くした GaN デバイス の開発に取り組んでいる⁽⁸⁾.

また、デバイスのチップは異物保護などのため樹脂モー ルドでパッケージングされており、ゲートソース間を直接 測定することはできない. パッケージ外部にある電極端子 の電圧は測定可能だが、その場合、チップから電極端子ま での寄生成分の影響を受けてしまい、正確な電圧を把握す ることが困難である.

本研究では,電力変換器で一般的に使われるハーフブリッ ジ回路において、デバイスのターン ON 時の挙動を配線や デバイスのパッケージ内部の寄生成分を含めてモデル化す ることによって、デバイス内部のゲートソース間容量に印 加されている電圧振動の推定手法を提案する.

2. ターンON時の回路モデリング

本研究では、ハーフブリッジ回路における Lo サイド側 のターン ON 時のスイッチングをモデリングする.

図1 GaNデバイスの等価モデル

2.1. パワー半導体デバイスの寄生成分

GaN デバイスの等価モデルは、図1のように表される. 一般にゲート電圧はゲートソース間容量 Cgs の電圧を指 す.しかし、前述のとおり実際の測定ではパッケージ内部

のコモンソースインダクタンス Lcs をはじめ, 配線の抵抗 やインダクタンスの影響が含まれてしまい, Cgs 電圧を測 定することは困難である.

図2 寄生成分を含めた等価回路

2.2. モデルの構築

理想的なハーフブリッジ回路に,半導体デバイスやデバ イスを実装する配線基板の寄生成分を含めた等価回路を図 2 に示す.ターン ON 中に流れる直流電流を考慮するため, Hi サイドのドレインソース間にL負荷を接続している.直 流電流は,計算時にL負荷電流に初期値を与えることによっ てモデルに反映する.Loサイドのターン ON 時は,Hi サイ ドは OFF,Loサイドが ON となっている.したがって,交 流電流は,Hi サイドは各端子間容量を,Loサイドはチャネ ル抵抗を,そしてバイパスコンデンサ Csnb を経由した経路 を流れる.直流電流は電源からL負荷を経由して流れる.

図3にゲート電圧振動を表現するための簡易モデルを示 す.

図3 Loサイド側のターンON時の簡易モデル

Lo サイド Q2 は ON 状態であるため、チャネル抵抗は 小さく無視できるものとする。その場合、ゲートソース間 容量 Cgs は帰還容量 Cgd を含めた入力容量 Ciss として表 現され、本モデルでは Ciss に印加される電圧をゲート電 圧と定義する。Hi サイド Q1 はドレイン、ソース、ゲート の各端子間容量の合成容量を考えた時,ドレインソース間容量 Cds が支配的になることから Cds を反映する.また,交流電流の経路に存在する抵抗成分,インダクタンス成分は,Rm,Lmとして表現する.さらに,Loサイドゲート駆動回路に存在する抵抗成分,インダクタンス成分は Rg,Lgと表現し,ゲートソース間に印加する電圧は Vg とする.

Hi サイドゲート駆動回路に存在する抵抗成分,インダク タンス成分は,ターン ON 時の挙動には影響しないため, 本モデルでは省略する.

バイパスコンデンサ Csnb は Cds と比較して十分大きい ため、交流経路においては電源とみなすことができる.こ の際、直流経路の電源と兼ねることができ、本モデル上で は電源 E として扱う.

3.評価検証

3.1. パラメータと初期条件の決定

本モデルの妥当性を検証するため,簡易モデルの各パラ メータにデバイスや基板パラメータの値を代入し電圧波形 を算出した.表1に電圧波形の算出に用いたパラメーター 覧を示す.

動作条件として、電源電圧を100V,L負荷に流れる初 期電流を12Aとした、スイッチング時の挙動を模擬する ため、時間 t=0 において、電源電圧Eを0→100V,Lo サイドゲート電圧 Vgを0→5.2V にそれぞれステップ応 答させることによってモデルの電気的状態を変化させ、電 圧波形を算出した。

GaN デバイスは, EPC2010C を用いた. ターン ON 時 の直前に Hi サイド, Lo サイドそれぞれのデバイスに印加 されている電圧を考慮し, Ciss は E ≒ 0V 時の値, Cds は E = 100 V 時の値をそれぞれデータシートより用いた⁽⁷⁾. コモンソースインダクタンス Lcs は, 300 pH を用いた⁽⁹⁾. 基板の抵抗成分, インダクタンス成分は, 後述する実機の データと比較するため, 基板の設計データを ANSYS Q3D Extractor を用いて解析を行い, 該当するパラメータを抽 出した.

表1 パラメーター覧

記号	パラメータ	記号	パラメータ
Rm	0.5Ω	Ciss	420 pF
Lm	7.8 nH	Cds	240 pF
Rg	11. 5 Ω	Lcs	300 pH
Lg	19. 8 nH	Lo	174 uH
E	0 → 100 V	Vg	0→5. 2 V

取り組

3.2. モデルの妥当性の検証

電圧振動モデルの妥当性を評価するため、ダブルパルス 評価にて実機との比較評価を行った.ゲート電圧の測定に は、できる限りデバイス近傍にプロービング端子を設けて 光絶縁プローブ(TIVP05 Tektronix 製)を用いて測定した. 実測波形とモデリング波形の比較を図4に示す.破線が実 測波形,実線がモデリング波形である.図4の比較波形では、 ターン ON がはじまり Lo サイドのチャネルに電流が流れ 始めた時間を0sとして示している.今回のモデルにおいて、 デバイスの過渡時の変化は考慮していないため波形は重な り合っていないが、波形の形状、及び振動周波数は、高い 精度で一致している.実際、モデリング波形の振動周波数 は、114.9 MHz であり、実測波形の振動周波数は117.9 MHz であるため、その誤差は 2.5 %であった.

ゲート電圧のピーク値を比較すると、モデリング波形の ピーク値は8.51 V であったのに対し、実測波形のピーク 値は7.42 V であり、その誤差は12.8 %であった. これは、 モデリング波形ではスイッチングの挙動を模擬するためE, Vg をステップ応答させているため、実測と比較して変化 が急峻であり、その結果、ゲート電圧のピーク値に差異が 生じたと考えられる.

3.3. デバイス内部のゲート電圧の推定

本モデルを用いて、実際のデバイス内部のゲート電圧(本 モデルにおける Ciss 電圧)の推定を行う.図5にモデル から算出した同条件における Ciss の電圧波形を示す.図 5からわかるとおり、Ciss 電圧の振動は実際に測定可能な Lcs を含んだ電圧と比較して振動が小さく.ピーク電圧は 5.80V であり耐圧の範囲内に収まっている.これは、ター ン ON 時に電流が変化することでインダクタンスに発生す る逆起電力の影響が大きいことを示している.発生する逆 起電力 V の大きさは、ドレイン電流変化量 *dI_d/dt* を用い て式 (i) で表される.

Lcs は 300 pH と小さいが GaN は数 ns オーダーで電流 が変化するため、ドレイン電流の変化量が大きいため発生 する起電力が大きく、測定される電圧波形と実際のデバイ ス内部のゲート電圧に大きな差異が生じていると考えられ る.スイッチング開始直後のゲート電圧の大きな沈み込み もLcs の影響と考えられる.モデルより推定した波形によっ て、デバイス内部のゲート電圧についてピーク電圧は実測 値よりも小さく、また、測定に見られるような大きな電圧 振動はしていないと考えられ、GaN のようなゲート耐圧 が小さなデバイスにおいても、問題なく動作できていると みなすことができる.これにより、スイッチング速度をよ

り高速にしたり印加するゲート電圧を大きくしたりすることが可能となり、スイッチング損失を低減することが可能となる.

図6にモデルにおける2つのインダクタンスLmとLg をパラメトリック変化させた時のゲート電圧のピーク値 マッピングを示す.一般にスイッチング回路におけるイン ダクタンスは小さくすることが要求されるが,図6より単 にインダクタンスを小さくすればピーク値が最小になるわ けではなく,2つの値をバランスよく設計することにより, ターン ON 時のゲート電圧振動のピーク値を抑えることが 可能となる.

取り組み

4.まとめ

本研究では、一般的なスイッチング回路であるハーフブ リッジ回路において、デバイスパッケージや基板に含まれ る寄生成分を加味したターン ON 時の回路モデルを作成し た.本モデルを用いることによって、実際には測定が困難 なデバイス内部の挙動を推定する手法を示した.GaN を 用いてスイッチングを行う場合、ゲート耐圧が小さくター ンON 時のサージやその後の振動によって容易に耐圧破壊 してしまう可能性がある。高速スイッチングによって電流 変化が大きい場合、コモンソースインダクタンスの逆起電 力によって実測波形とデバイス内部のゲート電圧には大き な差異が生じてしまうが、本モデルを用いてデバイス内部 のゲート電圧を推定することにより、耐圧超えの判定を行 うことが可能となる。これにより GaN の特徴である高速 スイッチング、低損失を活かしたパワエレ機器の小型、高 効率化が実現できる.

参考文献

- (1) 内閣官房ほか:2050 年カーボンニュートラルに伴うグリーン成長戦略, 2021年.6,(2021)
- (2) 高橋良和,両角朗,西村芳孝:パワーエレクトロニクスを支えるパワー半導体 モジュール技術の最新動向, In マイクロエレクトロニクスシンポジウム論文 集 第 26 回マイクロエレクトロニクスシンポジウム (pp, 15-22), 一般社 団法人 エレクトロニクス実装学会, (2016)
- (3) IMAOKA, J:カーボンニュートラルへ向けたパワーエレクトロニクス技術動 向と磁気部品の応用技術-高電力密度/高効率化/モデリング、日本 AEM 学会誌、30(1), (2022)
- (4) 菅沼克昭:SiC/GaN パワー半導体の実装と信頼性評価技術pp, 54-59, (2014)
- (5) 吉野学,竹内悠次郎,大井幸多,中島昭:パワー半導体デバイスの最新動向,電気学会論文誌 C (電子・情報・システム部門誌), 144(3), 186-192, (2024)
- (6) Efficient Power Conversion Corporation: EPC2010C Datasheet, Revised April 2021
- (7) GaN Systems: GS66516T Datasheet, Rev211025
- (8) ローム株式会社ホームページ
 https://www.rohm.co.jp/news-detail?news-title=2022-03-23_
 news_gan-hemt&defaultGroupId
- (9) David Reusch(Efficient Power Conversion Corporation) : White Paper:WP009, (2020)

著者

長尾 崇弘 研究開発部 内木 英喜 七 研究開発部 舞鶴工業

七森 公碩 舞鶴工業高等専門学校

特集・取り組

Ъ

巻頭言

特集・

論文

取り組

を 頭 言

論文

要旨

特集・取り組

Ъ

特集・受賞技術

セミソリッドダイカスト工法は、鋳造欠陥の低減や寸法精度の向上といった利点がある.一方、 ダイカスト用合金として広く用いられている ADC12 合金は、セミソリッドスラリー生成に適 した固相率となる温度域が狭いため、セミソリッドダイカストに用いることが困難であった.

本開発では、溶融状態から固液共存温度まで冷却する過程で機械的な振動を付与し、条件 を最適化することにより、ADC12合金スラリーの生成に成功した、また、本技術を量産工程で成立させ、 FCEV(燃料電池電気自動車)に使用する水素供給ユニット部品に採用されることとなった.

機械振動法による ADC12 合金

セミソリッドダイカスト工法開発と実用化

鬼頭 雅幸 篠田 潤一 小出 怜 市村 優汰 村上 雄一朗 三輪 謙治

また、この技術を改良して量産化したシステムを総称し、AiSS-Casting®(アイズキャスティング)と商標 登録した. AiSS-Casting[®] = Aisan Semi Solid Casting(2025.2.7 商標登録済み)

1.はじめに

昨今の自動車産業においては、カーボンニュートラルの 要求が強まる中、アルミ粗形材に対し、これまで以上に、 高品質・軽量化・低コストのニーズが高まっている.

図1に示すのはアルミ粗形材を生産する工法における機 能品質とコスト曲線であり、機能品質が上がればそれに応 じコストも上昇する.

その中で、従来から存在するセミソリッドダイカストは、 AC4CH 材を使用するのが一般的であるが,

・市場の流通量が少なく, 材料費が高い

流動性が低いため形状によっては厚肉となる

- ・機械的特性が低いため,要求品質によっては熱処理など の後処理が必要
- などの要因によりコストが高くなる.

そこで、市場の流通量が多く比較的安価なダイカストで 使用する ADC12 材にセミソリッドダイカストを適応する ことで、高品質と低コスト化の両立が可能となり、ニーズ に対応できると考えた.

2. セミソリッドダイカストの特徴

通常の液相ダイカストでは、図2に示す通り、液体が波 立つことによる空気の巻込み、液相から固相への相変化に よる収縮が発生する.

これらの現象により、巻込み、収縮による鋳巣の発生や 急冷による合金成分の偏析が発生し、内部品質を低下させ る要因となっており、これらは液体金属を高速成形する以 上避けられない問題である.

これに対し、セミソリッドダイカストでは液体よりも温

取り組

度が低い半凝固状態のスラリーから成形するため,凝固収 縮が減少し鋳巣の低減や寸法再現性の向上が期待できる.

また、プランジャが動き出す射出時においても、波立ちが 無い為、巻込みが減少することでも鋳巣低減が期待できる.

さらには、金型に充填される材料は全体的にスラリー状態であるが故、ある程度均一な組織の状態になっており、 偏析が減少し、機械的性質のバラつきが低減し、平均値の 向上も期待できる.

このことから液体金属を成形するという従来のダイカス トの根本的な問題を解決する工法と考えられているが、当 然その背反もある.

1つ目は粘性の高い流体を流そうとするため,湯流れ性が悪化し,充填不良になりやすくなる.

2 つ目は ADC12 を適応する場合,材料の特性による課 題がある.

図3に示す状態図の通り、ADC12は固液共存状態で存 在できる温度域がAC4CHに対し小さいため、温度コント ロールが難しく、半凝固金属スラリーを生成するのが困難 であると考えられていた。

また,図4に示す通り,凝固の形態も異なり,AC4CH では,粥状に均一に凝固が進行するが,ADC12合金は, 温度が低下しやすい外周部より凝固していく性質があるた め,スラリー内で固相率が不均一,偏析しやすい傾向があ る.このように,安価で強度に優れるADC12合金におい ては,固相が均一で良質なセミソリッドスラリーを生成す ることが困難であると考えられていた.

3. ADC12合金セミソリッドスラリーの生成

スラリーを生成するにあたっては,溶融金属よりも低い 温度の容器を機械的に振動させながら,溶融金属を容器に

注いで固液共存状態まで対流させながら冷却させる.

溶融金属が冷却されると,温度の低い容器表面から固相 が析出する.

そのイメージを図5に示す.

従来の AC4CH では電磁撹拌のような回転方向の流動を 与えて,容器表面から析出する固相を分散,微細化させて スラリーを得るが,ADC12 では容器との接触面に硬い初 期凝固殻が生成され良好なスラリーが得られない.

そこで、今回 ADC12 で良好なスラリーを得る方法として、機械振動を加えることで、強い撹拌力を与えることにより固相を容器表面から遊離させた.

その装置のイメージ図を図6に示す.

これにより,対流による固相の分散と微細化を促進し固 相が均一となる.最適な機械振動を付与することで,良質 なスラリーを生成する方法を確立した.

この機械振動によるスラリー生成方法の効果を図7に 示す.

取り組

図8 ADC12合金属スラリーのカット観察

振動無しの状態ではデンドライト状に成長した粗大な組 織が観察されるのに対し、振動有りの状態においては、組 織が微細化されており、粗形材の素性を低下させないため に望ましいとされる固相粒子の平均粒径は小さく、平均円 形度も小さいセミソリッドスラリーを得ることが可能と なった.

またそのスラリーは金属ヘラで簡単に切れ、スラリー表 面から内部まで均一な硬さで、カット断面は滑らかできれ いなスラリーを生成することが可能となった.(図 8)

4.スラリーの流動性確保の課題について

渦巻状テストピースが得られる流動長評価用の金型を用いて、ゲート厚さや射出速度を可変させることでせん断応 力が流動長へ与える影響を評価した.

図9に示す渦巻き試験片にてゲート厚さと流動長の関係 の評価結果を図10に示す.

セミソリッド状態では、ゲート厚さを小さくすることに より流動長が上昇する傾向がある.

ゲート厚さが 4.0 mm の場合は,流動抵抗が低下したた め流動長が上昇したと考えられる.

図10 ゲート厚さと流動長の関係

次に、この流動長試験で振ったパラメータを、 せん断速度: $\gamma = 6Q/(BH2) = 6V/H$ (γ :せん断速度、V:ゲート速度、Q:体積流量、 B:ゲート幅、H:ゲート厚さ) せん断応力 $\tau = \gamma \cdot \eta \quad \eta$:みかけ粘度 で、まとめ直してみる.

せん断速度は、ゲート幅とゲート厚さは小さい方がせん 断速度は大きくなり、またゲート速度が速い方がせん断速 度は大きくなる.

算出したせん断速度により流動長との関係をまとめ直した結果を図 11 で示す.

セミソリッド状態では、一定以上のせん断速度の増加に 伴い、流動長が向上する.これは、ゲート部でせん断速度 が上昇することにより、スラリーが受けるせん断応力が増 加し、スラリーの粘度が低下し、流動性が向上するためと

取り組み

巻頭言

特集・

論

 ∇

特集・取り組み

特集・受賞技術

考えられる.

このように、ある程度のせん断速度を与えることで、液 相に近い流動長を確保できることが分かった.

5. 寸法精度と機械的特性について

図 12 に示す製品を液相とセミソリッドダイカストで鋳造 し寸法精度に与える影響を評価した.

図12) 液相とセミソリッドの寸法精度比較

セミソリッドは液相に対して寸法ばらつきが低減している. これは、凝固の際の収縮率が小さいため、寸法再現性が向 上したと考えられる.

次に,液相とセミソリッドでダイカストした試験片(ϕ 10)を用いて試験を実施し,各機械的特性について比較評価した結果を図13に示す.

図13)液相とセミソリッドの機械的特性

伸びについては向上し、そのほかの項目においても液相 と同等以上という結果が得られた.これは、加振されたこと により組織が均一に微細化された状態となり、偏析も少な いため、ばらつきが低減し安定性が向上したと考えられる.

6. 液相とセミソリッドダイカスト共用ラインの構築

弊社で構築した液相とセミソリッドダイカストの共用ラインを図14に示す.

青枠内が既存ダイカストライン部、赤枠内がスラリーを生

成するためのセミソリッド専用工程となる. セミソリッドをダイ カストする時は、この専用工程にて容器の冷却、容器への離 型剤塗布、機械振動を付与してのスラリー生成といった流れ をロボット搬送することで全自動にて実施している.

このように共用ラインとすることで,投資抑制と負荷に応じた生産設備の有効活用が可能となりコスト低減を図ることができた.

7.本開発の効果

最後に、本開発の効果を図 15, 16 に示す.

図15 内部品質の向上

内部品質向上(ボイド率) ボード (%) (%) 液相 セミソリッド 液相 セミソリッド セミソリッド セミソリッド

16 軽量化とコスト低減の効果

巻頭言

特集・

論文

取り組み

1つ目は,内部品質の向上である.液相に対してセミソリッ ドは、ボイド率を 1/10 に低減できており、セミソリッドダ イカストの特徴である、巻込み、収縮による内部欠陥であ る鋳巣の低減が確認できる.

2つ目は,軽量化である.重量に関しては流動性を確保し、 液相同等のニアネットシェイプでの製品化を実現することに より, 従来の鍛造部品に対して, 約40%の軽量化ができた.

3つ目は、コスト低減である. ADC12 を使用し、液相ダ イカストと共用ラインを構築することで、鍛造に比べて約 80%のコスト低減をすることができた.また、ADC12を 使用することにより、T6 処理が不要となり CO2 低減にも 貢献している.

8.まとめと今後

本開発によりこれまで困難とされていた ADC12 のよう な共晶点に近い組成でもセミソリッドスラリーを生成するこ とに成功した. それにより, 大半の合金に対しこの技術を応 用することが可能となった.

今回この技術を使用し、関係者の多大な協力を得て第2 世代の FCV 水素系デリバリ Assy の量産までたどり着くこ とができた. (図 17)

BIT FCV水素系デリバリAssy

本研究は、愛知県の「知の拠点あいち・重点研究プロジェ クト」の一環として実施したものである. 同プロジェクトで ご協力頂いた, 元産業技術総合研究所 三輪謙治氏 ならび に,産業技術総合研究所村上雄一朗氏に深く感謝します.

参考文献

村上雄一朗,他5名,AC4CHアルミニウム合金半凝固スラリーの固相粒子形態 に及ぼす機械振動条件の影響, 鋳造工学86(9) (2014) 728-733. 村上雄一朗,他5名 機械振動付与によって作製したAC4CHアルミニウム合金セ ミソリッドスラリーの流動性評価, 鋳造工学 86(10) (2014) 773-780. Y. Murakami, 他4名, Non-Equilibrium Phase Crystallization of Al-Si Alloy Close to Eutectic Composition by Mechanical Vibration, Materials Transactions 63(12) (2022) 1657-1661. 村上雄一朗,他4名,機械振動付与によるADC12アルミニウム合金セミソリッド スラリー作製技術, 鋳造工学 95(1) (2023) 16-22.

村上雄一朗, 他5名, AC4CH アルミニウム合金のセミソリッド成形における成形 条件が流動性に与える影響, 鋳造工学84(11) (2012) 605-611. 村上雄一朗, 他5名, AC4CH 合金のセミソリッドダイカストにおける射出速度が 初晶 α-A1 相粒子分布に与える影響, 鋳造工学85(10) (2013) 665-671.

Y. Murakami, 他5名, Effect of the shape of solid particles on the distribution of particles in jis AC4CH (A356) Aluminum alloy Semi-Solid High-Pressure die casting, Light Metals 2016, 2016, pp. 201-206. Y. Murakami, 他5名, Effect of Casting Condition in Semi-Solid

Aluminum Alloy Injection Process on Distribution of Defects and Density, Shape Casting (2014) 11-18.

Y. Murakami, 他4名, Development of Slurry Preparation Method by Applying Mechanical Vibration, Solid State Phenomena 285 (2019) 333-338.

Y. Murakami, 他6名, Effect of Solid Particles on Fluidity of Semi-Solid Aluminum Alloy Slurry, Light Metals 2012 (2012) 297-301.

Y. Murakami, 他6名, Evaluation of fluidity of semi-solid aluminum alloy slurry prepared by mechanical vibration, 71st World Foundry Congress: Advanced Sustainable Foundry, WFC 2014, 2014. Y. Murakami, 他4名, Effect of vibration conditions and shear rate on the shape of solid particles in JIS AC4CH aluminum alloy slurry made by applying mechanical vibration, 72nd World Foundry Congress,

著者

WFC 2016, 2016.

篠田 潤

三輪 謙治

産業技術総合研究所 元産業技術総合研究所

令和3年度

基幹製品生技部

鬼頭 雅幸 工機·生技開発部

村上 雄一朗

小出 怜 T機·生技開発部

市村 優汰 基幹製品生技部

巻頭言

特集・

· 論 文

特集・取り組

Ъ

特集・受賞技術

受賞技術

(公益社団法人 発明協会) 令和5年度 日本鋳造工学会 豊田賞 (公益社団法人 日本鋳造工学会)

愛知発明表彰 愛知発明賞

受賞実績

素形材産業技術賞 奨励賞 (一般財団法人素形材センター)

中部科学技術センター顕彰 大賞 (公益財団法人 中部科学技術センター)

取り組み

巻頭言

特集・論文

特集・取り組み

小型モビリティ用モータコントローラ

田中 智也 小島 崚 川崎 良彦 細川 康夫 氏家 慈宙

精密な制御で、電動モビリティの力を最大限に引き出します!

私たちは、電動モビリティをもっと快適で効率的にする ための技術開発に取り組んでいます。電動モビリティの 動力となるモータは、ただバッテリから電流を流すだけで は、思い通りに動いてくれません。そこで活躍するのが 「モータコントローラ」です!このコントローラが、走行 状況に応じて電流や周波数を細かく調整し、スムーズな乗 り心地やユーザーの意志を実現します。

愛三工業は、これまでエンジンやハイブリッド車の制御 技術を長年培ってきました。その経験を活かしながら、

ハードウェアやソフトウェアを開発し、お客様のニーズに ぴったり合ったシステムを提案しています。

また、シミュレーション技術を活用して、無駄のない設 計と高品質な製品づくりを徹底。実際に車両に搭載した後 も、最適な動作になるよう細かく調整を行っています。

この技術のおかげで、発進時や低速走行時の車の揺れを 抑えたり、坂道発進で後ろに下がるのを防いだりすること ができます。これからも、安全で快適なモビリティの進化 を支え、新しい価値を生み出すことに挑戦していきます!

論文

特集・受賞技術

BEV 車用 電池ケース深絞り技術開発

塚本 雅之 若杉 圭介

高品質かつ薄肉をかなえるプレス工法の確立により、 電池の品質とコスト低減に貢献します

昨今の環境問題への関心の高まりから自動車のEV化が 進む中で、当社は電気で走行するBEV (Battery Electric Vehicle) に搭載するリチウムイオン電池ケースの工法開 発に取り組んできました。電池ケースには、形状として一 般的に円筒型や角型などありますが、今回は、お得意先様 の車載ニーズに合わせた高い強度や耐久性、軽量化を兼ね 備えた角型形状(01)を、一枚のアルミ合金板材を深絞りプ レスで造り上げる(02)ことに成功しました。

角型の製缶技術には、板材を単純に絞り込んでいくこと に加え、角型とするためのコーナー部の曲げ加工が必要。 さらに強度や耐久性を確保するため角型の各面は、おのお のに異なる板厚を求められます。それら形状の造り込みに 加えて、アルミ材の高騰化に対しては、アルミ材の高い歩 留まり率(プレスで切り捨てる廃材と製品との比率)を確 保する必要がありました。

それらの課題を解決するため、材料の特徴を活かした 「しごきプレス工法」を導入。多数の工程で徐々に板材を 絞り込んでいく(一度に絞ると割れてしまい形状が作れな い)従来の工法に対して、工程数削減と材料歩留まりを向 上させるプレス工法(03)を開発。さらに、割れの発生も抑 制させた工程設計とプレストライならびにCAE*解析も交 えて最適工程数(03+)を追求しました。

※ Computer Aided Engineering:コンピュータを利用した設計支援

巻頭言

取り組み

- 量産化に向けた取り組みを視野に活動を推進中。
- さらなる向上に向け、電池容量アップとともに、 コスト削減15%以上となる次期工法開発を進行中。

今後の展開

取り組み

電動化に向けたソフトウェア人財育成

電動システム開発本部

社内人財のリスキリングで自動車産業の未来を開きます!

「カーボンニュートラル」実現のカギを握る電動システ ムの開発には、ソフトウェアエンジニアが必要不可欠です。 しかしエンジン用メカ部品を基幹事業としてきた当社には ソフトウェアエンジニアが極端に少なく、業界全体でも人 財が不足しているため、人財確保に課題がありました。

そこで、3年間で100名のソフトウェアエンジニア育成を 目標とした「ソフトウェアファースト100 (SWF100)」 を2022年度に立ち上げ、社内の若手~中堅社員でソフト ウェアエンジニアへの転身を希望する人財のリスキリング と、ソフトウェア開発職種で採用した新入社員の育成に取 り組みました。 まず育成実行の特命チームを設置、会社が求める人財像 の定義から始め、育成方針、目標、方法を検討。実際に育 成を進めながらより良い方法へ修正をかけ続けました。

育成方針は01に示した形とし、育成期間中はスキル習得 状況を見える化し、不足しているスキルエリアや個人の適 正を考慮した題材選定や指導を行いました。活動最終年度 には、リーダーの下で実製品開発に参画できるまでに成長 し、24年度で3年間の活動は一旦終了。目標とした人数と スキルレベルをほぼ達成できました。今後は組織力強化を 目指し、能力強化とリーダー層育成に力を入れていく予定 です。

実績ハイライト

01 求める人財像から 育成ゴール・ 育成方法を決定 計画段階では、最初に目標となる求める人財像、 3年間の育成ゴール、評価方法、育成カリキュ ラムを明確化しました。人財像は、愛三工業が 強みとしてきた技術をベースにソフト技術を加 え、「車載システムが自立開発できるレベルの スキルを有する人財」と定義しました。

受賞技術

論文

巻頭言

特集・論文

特集・取り組み

特集・受賞技術

年度毎のゴールを定め、3年間で自立開発できる人財を育成 プロジェクト a、プロジェクト達成度を高く 自立開発 **達成度** 高 達成度 中 支援のもと開発 開発を経験 知識習得 達成度 低 2年日 基础 1年月 3年日 広日 成長 スキル ソフトウェアファースト人財立上

実開発でのOJT ⇒ 実践力の修得

02 実践力強化を重視し OJT 中心の教育

短期間で実践力を身に付けるために育成カリキュ ラムは OJT を中心としました。OJT に必要な基 礎技術は、OJT 前に3カ月間実施する基礎教育で 習得。開発テーマは事業戦略ロードマップを元に 設定し、チーム毎にプロジェクトリーダーの指導 の下で愛三開発プロセスに則り開発を進めます。 クールと呼ばれる6~9カ月毎の開発を繰返し経 験を重ねることでレベルアップを図ります。

03 育成状況の可視化とフォローアップ

メンバーの評価はあらかじめ定義した基準 を基に見える化して個人適正に応じたフォ ローを実施。

基準は業界標準 ETSS(Embedded Technology Skill Standards) を拡張して 適用。

成果

- 3年間で、リスキルメンバーのほぼ全員が目標とする中級レベルに成長。
- 2022年後半からは、複数の実製品開発テーマにも戦力として参画。
- 基礎研修とOJTによる教育カリキュラムの仕組み構築を完了。

- 今後の対応
- 量産開発増加や車載セキュリティなどの新たな要求、SDV や生成系 AI などの環境変化にも対応できるようにさらにレベルアップを図ります。
- 重点活動として、人財強化(マネージャー育成、スペシャリスト育成など) と組織強化(品質開発プロセス、管理システム活用など)に取り組み、新規 事業として電動化製品開発を加速させます。

巻頭言

特集・論文

特集・取り組

Ъ

モデルライブラリによる MBD 普及推進

中村 孝弘 野口 雄生

MBD を活用して開発スピードアップ!開発力強化を実現しました /

従来からコンピュータ上でモデル開発や検証を行うMBD (Model Based Development) に取り組んでいました が、部署ごとの活動だったため、モデル開発の重複などの 弊害がありました。そこでMBDを標準化し、モデルを技術 部全体の資産として活用できる仕組みを作ろうと、2020 年~21年にワーキング活動を行いました。

背景にあったのは、CASEなど自動車業界を取り巻く環 境の急激な変化です。当社は、開発力を強化してCASEの 1つであるE(電動化)への対応を加速させ、電動化製品 の量産化を早期に実現することを目指しました。 内燃機関(エンジン関連)製品を開発しつつ電動化製品 も開発していくには、効率の良い設計と開発スピードの向 上が欠かせません。そこでMBDを社内に普及させ、手戻り

(作業のやり直し)を減らし、開発スピードの向上をねら いました。課題であったモデル開発の重複は、クラウド上 に保存場所(モデルライブラリ)を設け、仕様書(取説) のフォーマットを定めることでモデル一覧の可視化を実 現。さらに、モデル名のネーミングルールなどモデル構築 のルール制定で部署間のモデル流用も容易になるなど、多 くの成果が上がっています。

巻頭言

特集・

論文

〈モデルの保存場所 (モデルライブラリ)〉

製品、粒度、使用ソフト別にリスト化 ⇒見やすさ、検索のしやすさを重視

02開発一覧の可視化 見やすさや検索のしやすさを重視したモ デルライブラリと、必要情報を記載でき るモデル仕様書を作成、開発済みモデル の可視化が容易に。類似モデルの活用に より工数低減も実現。

〈モデルの仕様書(取説)〉

モデル情報(入出力、計算内容、粒度)など

03 MBD サイト MBD の有用性を社内に浸透させるため、 技術教育を実施。また、MBD に関するす べての情報をクラウド上に集約した MBD サイトも構築、運用しています。

		a Revised Constant			 29514254888(F5154886-
17	•		-	-	-10410 EREKEL ELA:
	14 16 16 16(16,7)(7)(16)	-			-5458438646.8
		-		-	1-7719CUFARBUILA

成果(問題解決)

■ モデルライブラリ作成により、開発の重複を回避。 ■ モデル構築ルール制定で、流用しやすい標準化したモデルの構築を実現。 基礎教育の実施によりMBDの利用者が拡大。

今後の展開

■ モデルライブラリのさらなる充実を図り、開発力の強化につなげます。

取り組み

特集・

・ 論 文

特集・取り組

Ъ

特集・受賞技術

連成解析によるソレノイドバルブ開発

中村 孝弘 小林 弘紀

電磁界解析ソフトと設計探査ソフトや 1D-CAE ソフトの連成で、 設計期間の大幅減を達成

温室効果ガスの排出を全体としてゼロにするカーボン ニュートラル、脱炭素社会を目指す動きが世界で高まって います。化石燃料に代わるエネルギー源として、太陽光や 風力といった再生可能エネルギーに加え、大きな注目を集 めているのが水素です。

当社は、1990年代半ばから水素系製品を手掛けてい て、二酸化炭素を排出しない究極のエコカーとして注目 を集めている「MIRAI」などに採用されてきました。そし て、FCV(燃料電池車)向け製品の拡充に向けて新たに開 発に挑んだのがリニアソレノイドバルブ(LSV)です。

LSVとは、電流によって流体の流量を調整する装置です

が、磁気回路設計の工程で検討が繰り返されることが多 く、開発の課題となっていました。そこで、電磁界解析ソ フトJMAGを中心に連成手法を用いて課題の解決に挑戦。 設計探査ソフトとの連成で形状を検討することにより製品 全体の最適設計を自動化、1D-CAE*との連成で応答性を 評価できる解析手法を構築。2つの新たな設計手法の構築 で、設計期間を68%低減し、製品の約20%小型化も達成 しました。

今回の挑戦で培った設計手法の構築技術を仕組み化し て、新たな挑戦につなげていきたいと考えています。

※上流段階から適用できる設計支援の考え方、手法、ツール

取り組み

特集・論文

特集・取り組

Ъ

特集・受賞技術

論文

取り組み

受賞技術

知財ビジネスマッチング事業への参画

経営企画部 知的財産室

新たな価値創造や他者ビジネスの支援を目指し ドローンの特許を開放

毎年、多くの特許が新たに出願されている一方で、せっ かく権利を取得しても活用されず眠っている特許も多数あ ります。実際、国内には約160万件の特許がありますが、 約半数は大企業が保有したまま使われていないといわれて います。そうした大企業の眠っている特許と、中小企業や ベンチャー企業とをつなぎ、魅力的な商品の開発や新事 業の創出につなげようというのが「知財ビジネスマッチン グ」事業です。

保有する特許と外部人材のアイデアや技術が組み合わさ ることで新たな価値創造につながる点や、社会貢献、企 業価値向上の観点から、当社はこの事業に積極的に参画し ています。経済産業省(近畿経済産業局)やあいち銀行、 日刊工業新聞社のプラットフォームにドローンに関する特 許・意匠を提供しています。当社開発のドローンは、自動 車部品開発で培ったエンジン技術を活用したハイブリッド 式で、電動式に比べ航続距離の圧倒的な長さが特徴です。 このドローン開発で取得した制御に関する特許とデザイン に関する意匠を開放特許*として公開、ドローンや空飛ぶ クルマの開発・製造を検討している企業などのビジネス支 援につながればと考えています。

※他者にライセンス契約などの形で開放する意思のある特許

開放特許のポイント

〈技術の特徴〉

ホバリング飛行時において、ホバリング飛行に必要な最低出力 値よりも高く、かつ上昇飛行に必要な最低出力値よりも低い所 定出力値で駆動し、余剰電力をバッテリに充電することで長時 間飛行を可能にする。【出力制御】

移動飛行時において、エンジンの駆動により生じる反トルクの 作用方向と、機体を傾ける方向(進行方向)を一致させること で省エネ飛行を行う。【機体制御】

01 ドローンの制御に関する特許

長時間飛行や省エネ飛行を実現する、出力制御と機体制御に 関する特許です。

〈活用が見込める事例〉

エンジンとバッテリを用いたハイブリッド式の ドローン、空飛ぶクルマ。

02 ドローンのデザインに関する意匠

「人々に安心とやさしさを与える」をコンセプトにした、 一般的なドローンとは一線を画した意匠が特徴です。

〈意匠の特徴〉

- ・卵を模した形状で柔らかさをイメージ
- ・卵を運ぶようにやさしく、安全に運ぶイメージ
- ・フレームを曲線で構成し、使う時に当たっても 怪我をしないような形状
- ・人が荷物を取り扱い易い高さとして人にやさしい

広範囲

斜視図

斜視図 (開蓋状態)

成果(問題解決)

■ 経済産業省(近畿経済産業局)、あいち銀行、日刊工業新聞社のプラット フォームに特許・意匠を開放。

- 今後の展開
- 現在提供済みのプラットフォーム以外にも本案件を開放していきたい。
- 特許利用の申し入れがあった場合は、事業化に結び付くよう積極的に支援 したい。
- 将来的には、ドローン以外の技術も必要に応じて開放したい。

巻頭言

特集・論文

特集・取り組み

取り組み

巻頭言

特集・論文

特集・取り組

Ъ

特集・受賞技術

論文

EGR 用二重偏心弁

1. 発明等の概要

本発明は、自動車用エンジンの排ガス再循環 (Exhaust Gas Recirculation) システムのバルブ (EGR バルブ) に 採用されており、排ガスのクリーン化及び燃費の向上に役 立っている。排ガス再循環とは、エンジンから出た排気ガ スの一部を吸気側に戻して再燃焼させるシステムのことを 指し、もともとディーゼル車の排ガス浄化 (NO_x 低減) が 主な用途であったが、エンジンの吸気抵抗を減らして燃料 の消費を低減できる為、今ではガソリン車でも広く採用さ れている。 (図 1)

本発明品は、従来のEGRバルブ(図2の従来品1)に対し、 製品を大型化することなく、再循環流量を約2倍まで高め たものであり、自動車の軽量化及び環境負荷の低減に貢献 している。

また現在、本発明品は国内拠点にて年間約 60 万台生産 されており、国内に供給されている。

図2 製品重量と最大流量の関係

図1) 排ガス再循環システムと EGR バルブ

2. 従来発明等の課題と開発ニーズ

従来のEGR バルブはポペット弁式 (小型・小流量・高密閉) のものが主流であったが、再循環させる排ガスの量 (EGR 率)が多い程、燃費向上と排ガスのクリーン化が促進され る為、近年のニーズとして再循環させる排ガスの大流量化 が求められるようになった。よって、各社から大流量化を 実現すべく、以下のような改良案が提唱された。(図 3)

大流量化の開発ニーズに応えるためには、従来 品2は製品化が困難であり、従来品1は製品重 量増を伴う大型化が必要であった。

■従来品 2(バタフラィ弁) ・小型、大流量化は可能だが、 高密閉維持が困難

バルブ開 バルブ開 ⇒バネカで押し付けられる為 密閉部が摩耗し、密閉度維持が困難

取り組み

3. 発明等の特徴

本発明は、製品を大型化することなく、大流量と高密閉 を両立させるような構造を取っており、シャフトとバルブ の中心軸を上下左右にずらす(二重偏心させる)ことで、 大流量化が得意なバタフライ弁のように開き、閉じた姿勢

<特徴1>相反する要求性能の両立

は密閉性に優れたポペット弁のようになることを特徴としたものである。(請求項1)

また、本発明はバルブに関する基礎的な発明である為、 様々な用途への応用が期待できる。

<特徴2>優れた耐久性能と簡素な構造

従来品2(図3下)のバタフライ弁は、各構成部品の寸 法ばらつきを、①弁座のフローティング構造、②バネによ るシール部の押付によって吸収しようとしていた。しかし この構造では、新品当初はシール性を確保できるが、バル ブ開閉時に必ず弁体と弁座の接触圧力が高くなり、局部的 に溶着する現象(いわゆる、かじり)が発生する為、シー ル部が摩耗し、高密閉状態を維持することができない。(図 5上) 一方、今回発明技術の二重偏心弁は、各構成部品のばら つきを、①偏心軸構造、②シャフト〜バルブ間の隙間を活 用して組付け段階で吸収する構造を取っている。このため、 バルブ開閉時に「かじり」は発生しない為、密閉性は新品 当初のレベルを保つことができる。(図5下)

また、バルブ周りの構成部品点数を比較しても、従来品 2の8点に対し発明品は4点と半減している。

論文

	受賞実績	
令和 2 年度	愛知発明表彰 愛知発明賞 (一般社団法人 愛知県発明協会)	令和6年度科学技術分野の文部科学大臣表彰表彰式
	中部地方発明表彰 発明奨励賞 (公益社団法人 発明協会)	
令和4年度	中部科学技術センター顕彰 奨励賞 (公益財団法人 中部科学技術センター)	<u>) State ()</u>
令和6年度	科学技術分野の文部科学大臣表彰 科学技術賞 (開発部門) (文部科学省)	
	As are Langue to the second the second to the second to the second the second to the second to	

н

特集・論文

巻頭言

特集・取り組み

愛三工業株式会社 〒474-8588 愛知県大府市共和町-丁目1番地の1 https://www.aisan-ind.co.jp